Dynamic modeling and analysis of an origami-inspired optical shield for the starshade spacecraft

Landen Bowen, Brian Trease, Mary Frecker, Timothy Simpson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

The Starshade is a future exoplanet discovery mission consisting of a satellite and a 34 meter diameter starshade used to block the light of a star of interest, enhancing visualization of the orbiting planets. The starshade itself is composed of a number of 7 meter long petals surrounding a 20 meter diameter optical shield. A critical design requirement of the optical shield is stowage in a 3 meter diameter area during launch. Origami has been investigated as a means of collapsing the optical shield, specifically a family of action origami models known as "flashers." In this paper a dynamic model of an optical shield design candidate based on a flasher pattern is created in Adams 2014. As these patterns can have many parts and joints, a method for the automatic creation of dynamic models using information about the geometry of the crease pattern is utilized. As the fabricated optical shield panels will be somewhat flexible, each quadrilateral panel is modeled as two rigid triangles connected with a joint. The effect of joint stiffness on the forces and torques developed during deployment is investigated. It is found that the optical shield design is rigid foldable if the panel flexibility is taken into account by additional joints, which are found to bend from 10°-40°. Joint forces are predicted over the deployment, and maximum and average joint forces are tabulated. These and other insights gained from the dynamic model can help guide future Starshade design decisions, and similar analyses can be performed for other origami-inspired deployable structures.

Original languageEnglish (US)
Title of host publicationMultifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850480
DOIs
StatePublished - 2016
EventASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016 - Stowe, United States
Duration: Sep 28 2016Sep 30 2016

Publication series

NameASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Volume1

Other

OtherASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
CountryUnited States
CityStowe
Period9/28/169/30/16

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Civil and Structural Engineering
  • Control and Systems Engineering
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Dynamic modeling and analysis of an origami-inspired optical shield for the starshade spacecraft'. Together they form a unique fingerprint.

Cite this