Dynamic modeling of electric springs

Nilanjan Ray Chaudhuri, Chi Kwan Lee, Balarko Chaudhuri, S. Y.Ron Hui

Research output: Contribution to journalArticle

77 Scopus citations

Abstract

The use of 'Electric Springs' is a novel way of distributed voltage control while simultaneously achieving effective demand-side management through modulation of noncritical loads in response to the fluctuations in intermittent renewable energy sources (e.g., wind). The proof-of-concept has been successfully demonstrated on a simple 10-kVA test system hardware. However, to show the effectiveness of such electric springs when installed in large numbers across the power system, there is a need to develop simple and yet accurate simulation models for these electric springs which can be incorporated in large-scale power system simulation studies. This paper describes the dynamic simulation approach for electric springs which is appropriate for voltage and frequency control studies at the power system level. The proposed model is validated by comparing the simulation results against the experimental results. Close similarity between the simulation and experimental results gave us the confidence to use this electric spring model for investigating the effectiveness of their collective operation when distributed in large number across a power system. Effectiveness of an electric spring under unity and non-unity load power factors and different proportions of critical and noncritical loads is also demonstrated.

Original languageEnglish (US)
Article number6873343
Pages (from-to)2450-2458
Number of pages9
JournalIEEE Transactions on Smart Grid
Volume5
Issue number5
DOIs
StatePublished - Sep 1 2014

All Science Journal Classification (ASJC) codes

  • Computer Science(all)

Fingerprint Dive into the research topics of 'Dynamic modeling of electric springs'. Together they form a unique fingerprint.

  • Cite this

    Chaudhuri, N. R., Lee, C. K., Chaudhuri, B., & Hui, S. Y. R. (2014). Dynamic modeling of electric springs. IEEE Transactions on Smart Grid, 5(5), 2450-2458. [6873343]. https://doi.org/10.1109/TSG.2014.2319858