Dynamical model and nonextensive statistical mechanics of liquid water path fluctuations in stratus clouds

K. Ivanova, H. N. Shirer, T. P. Ackerman, E. E. Clothiaux

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The shape and tails of the probability distribution functions of the liquid water path in stratus clouds are expressed through a model encompassing Tsallis nonextensive statistics. A model originally proposed to describe turbulent flows describes the behavior of the normalized increments of the liquid water path, at both small and large timescales, provided that the distribution of the local variability of the normalized increments can be sufficiently well fitted with a χ2 distribution. The transition between the small-timescale model of a nonextensive process and the large-scale Gaussian extensive homogeneous fluctuation model is found to be at around 24 h.

Original languageEnglish (US)
Article numberD10211
JournalJournal of Geophysical Research Atmospheres
Volume112
Issue number10
DOIs
StatePublished - May 27 2007

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Dynamical model and nonextensive statistical mechanics of liquid water path fluctuations in stratus clouds'. Together they form a unique fingerprint.

Cite this