Dynamics in Miscible Blends of Polystyrene and Poly(vinyl methyl ether)

Jai A. Pathak, Ralph H. Colby, George Floudas, Robert Jérôme

Research output: Contribution to journalArticle

123 Scopus citations

Abstract

We report results on the linear viscoelasticity (oscillatory shear in the temperature range Tg (glass-transition temperature) ≤ T ≤ Tg + 90 K) of miscible blends of polystyrene (PS) and poly(vinyl methyl ether) (PVME) and segmental relaxations, measured by dielectric spectroscopy. The Flory-Huggins interaction parameter of this blend is weakly negative, and the glass transitions of the pure components are quite disparate (ΔTg = 125 K). PS/PVME blends have been found to be consistently thermorheologically complex at both the segmental and terminal levels: the empirical time-temperature superposition (tTS) principle applies to neither their oscillatory shear response nor their dielectric response. Using the tube model, we quantitatively compare dielectric and mechanical results. At low temperatures, the effective time scale for motion of a Kuhn segment (the shortest Rouse mode) is near the long-time end of the distribution of segmental relaxation times of PVME, in both the pure and blended states. The slowest relaxing segments thus control the longer-time relaxation processes of the chains. Miscible blends with weak interactions and large ΔTg have concentration fluctuations that broaden the distribution of segmental relaxation times. This distribution narrows as the temperature is raised in the blend, leading to the failure of tTS for terminal dynamics.

Original languageEnglish (US)
Pages (from-to)2553-2561
Number of pages9
JournalMacromolecules
Volume32
Issue number8
DOIs
StatePublished - Apr 20 1999

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Dynamics in Miscible Blends of Polystyrene and Poly(vinyl methyl ether)'. Together they form a unique fingerprint.

  • Cite this