Effect of guest structure on amylose-guest inclusion complexation

Lingyan Kong, Diana M. Perez-Santos, Gregory Ray Ziegler

Research output: Contribution to journalArticle

Abstract

Amylose-guest inclusion complexes are a type of supramolecular host-guest assembly that can provide protection for and controlled release of guest molecules. The successful and efficient complexation between amylose and guest molecules is governed by factors including: guest structure and chemistry, and process method and parameters. Here we investigated the formation, crystalline structure, and thermal stability of amylose inclusion complexes with a total of ten guest molecules differing in alkyl chain length (C10 and C16), molecular shape (linear vs. branched), and functional groups (alcohol, aldehyde, carboxylic acid, and ester). Their ability to complex with amylose was evaluated using two complexation methods (partitioning from water after heating and partitioning from a DMSO/water solution), and two annealing temperatures (60 and 90 °C). The extent of complexation differed for the two methods, likely due to guest solubility and partitioning behavior in the respective solvent systems. Annealing temperature created inclusion complexes of different structure and dissociation temperature using the water approach. Here we suggest that the so-called “Form I” and “Form II” V-type amylose inclusion complexes differ in their crystal size, crystallinity and arrangement of guest molecules in the helical cavity, rather than being amorphous or crystalline as previously reported. Chain length, molecular shape, and functional groups affected the thermal stability of the inclusion complexes. Shorter chain length, unsaturation, and short branched chains formed inclusion complexes with lower dissociation temperatures. We propose the Form II as a tail-to-tail arrangement of molecules in the helices that leaves the functional groups at the helical openings. Guest compounds that either failed to form complexes from water or formed poor complexes were able to form inclusion complexes with amylose using the DMSO approach, suggesting solubility of the guest, flexibility of the amylose chain, or the partitioning of the guest between the solvent and the helix core affected complexation.

Original languageEnglish (US)
Article number105188
JournalFood Hydrocolloids
Volume97
DOIs
StatePublished - Dec 1 2019

Fingerprint

Amylose
Complexation
amylose
Molecules
Chain length
Functional groups
Temperature
Water
annealing
Dimethyl Sulfoxide
thermal stability
Solubility
solubility
Thermodynamic stability
tail
Hot Temperature
Annealing
Crystalline materials
temperature
water

All Science Journal Classification (ASJC) codes

  • Food Science
  • Chemistry(all)
  • Chemical Engineering(all)

Cite this

@article{59d810438a484f54bed561841c8d49b3,
title = "Effect of guest structure on amylose-guest inclusion complexation",
abstract = "Amylose-guest inclusion complexes are a type of supramolecular host-guest assembly that can provide protection for and controlled release of guest molecules. The successful and efficient complexation between amylose and guest molecules is governed by factors including: guest structure and chemistry, and process method and parameters. Here we investigated the formation, crystalline structure, and thermal stability of amylose inclusion complexes with a total of ten guest molecules differing in alkyl chain length (C10 and C16), molecular shape (linear vs. branched), and functional groups (alcohol, aldehyde, carboxylic acid, and ester). Their ability to complex with amylose was evaluated using two complexation methods (partitioning from water after heating and partitioning from a DMSO/water solution), and two annealing temperatures (60 and 90 °C). The extent of complexation differed for the two methods, likely due to guest solubility and partitioning behavior in the respective solvent systems. Annealing temperature created inclusion complexes of different structure and dissociation temperature using the water approach. Here we suggest that the so-called “Form I” and “Form II” V-type amylose inclusion complexes differ in their crystal size, crystallinity and arrangement of guest molecules in the helical cavity, rather than being amorphous or crystalline as previously reported. Chain length, molecular shape, and functional groups affected the thermal stability of the inclusion complexes. Shorter chain length, unsaturation, and short branched chains formed inclusion complexes with lower dissociation temperatures. We propose the Form II as a tail-to-tail arrangement of molecules in the helices that leaves the functional groups at the helical openings. Guest compounds that either failed to form complexes from water or formed poor complexes were able to form inclusion complexes with amylose using the DMSO approach, suggesting solubility of the guest, flexibility of the amylose chain, or the partitioning of the guest between the solvent and the helix core affected complexation.",
author = "Lingyan Kong and Perez-Santos, {Diana M.} and Ziegler, {Gregory Ray}",
year = "2019",
month = "12",
day = "1",
doi = "10.1016/j.foodhyd.2019.105188",
language = "English (US)",
volume = "97",
journal = "Food Hydrocolloids",
issn = "0268-005X",
publisher = "Elsevier",

}

Effect of guest structure on amylose-guest inclusion complexation. / Kong, Lingyan; Perez-Santos, Diana M.; Ziegler, Gregory Ray.

In: Food Hydrocolloids, Vol. 97, 105188, 01.12.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effect of guest structure on amylose-guest inclusion complexation

AU - Kong, Lingyan

AU - Perez-Santos, Diana M.

AU - Ziegler, Gregory Ray

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Amylose-guest inclusion complexes are a type of supramolecular host-guest assembly that can provide protection for and controlled release of guest molecules. The successful and efficient complexation between amylose and guest molecules is governed by factors including: guest structure and chemistry, and process method and parameters. Here we investigated the formation, crystalline structure, and thermal stability of amylose inclusion complexes with a total of ten guest molecules differing in alkyl chain length (C10 and C16), molecular shape (linear vs. branched), and functional groups (alcohol, aldehyde, carboxylic acid, and ester). Their ability to complex with amylose was evaluated using two complexation methods (partitioning from water after heating and partitioning from a DMSO/water solution), and two annealing temperatures (60 and 90 °C). The extent of complexation differed for the two methods, likely due to guest solubility and partitioning behavior in the respective solvent systems. Annealing temperature created inclusion complexes of different structure and dissociation temperature using the water approach. Here we suggest that the so-called “Form I” and “Form II” V-type amylose inclusion complexes differ in their crystal size, crystallinity and arrangement of guest molecules in the helical cavity, rather than being amorphous or crystalline as previously reported. Chain length, molecular shape, and functional groups affected the thermal stability of the inclusion complexes. Shorter chain length, unsaturation, and short branched chains formed inclusion complexes with lower dissociation temperatures. We propose the Form II as a tail-to-tail arrangement of molecules in the helices that leaves the functional groups at the helical openings. Guest compounds that either failed to form complexes from water or formed poor complexes were able to form inclusion complexes with amylose using the DMSO approach, suggesting solubility of the guest, flexibility of the amylose chain, or the partitioning of the guest between the solvent and the helix core affected complexation.

AB - Amylose-guest inclusion complexes are a type of supramolecular host-guest assembly that can provide protection for and controlled release of guest molecules. The successful and efficient complexation between amylose and guest molecules is governed by factors including: guest structure and chemistry, and process method and parameters. Here we investigated the formation, crystalline structure, and thermal stability of amylose inclusion complexes with a total of ten guest molecules differing in alkyl chain length (C10 and C16), molecular shape (linear vs. branched), and functional groups (alcohol, aldehyde, carboxylic acid, and ester). Their ability to complex with amylose was evaluated using two complexation methods (partitioning from water after heating and partitioning from a DMSO/water solution), and two annealing temperatures (60 and 90 °C). The extent of complexation differed for the two methods, likely due to guest solubility and partitioning behavior in the respective solvent systems. Annealing temperature created inclusion complexes of different structure and dissociation temperature using the water approach. Here we suggest that the so-called “Form I” and “Form II” V-type amylose inclusion complexes differ in their crystal size, crystallinity and arrangement of guest molecules in the helical cavity, rather than being amorphous or crystalline as previously reported. Chain length, molecular shape, and functional groups affected the thermal stability of the inclusion complexes. Shorter chain length, unsaturation, and short branched chains formed inclusion complexes with lower dissociation temperatures. We propose the Form II as a tail-to-tail arrangement of molecules in the helices that leaves the functional groups at the helical openings. Guest compounds that either failed to form complexes from water or formed poor complexes were able to form inclusion complexes with amylose using the DMSO approach, suggesting solubility of the guest, flexibility of the amylose chain, or the partitioning of the guest between the solvent and the helix core affected complexation.

UR - http://www.scopus.com/inward/record.url?scp=85069435416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069435416&partnerID=8YFLogxK

U2 - 10.1016/j.foodhyd.2019.105188

DO - 10.1016/j.foodhyd.2019.105188

M3 - Article

VL - 97

JO - Food Hydrocolloids

JF - Food Hydrocolloids

SN - 0268-005X

M1 - 105188

ER -