Effect of incidence on wall heating rates and aerodynamics on a film cooled transonic turbine blade

Cengiz Camci, Tony Arts

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This study investigates the influence of incidence on convective heat transfer to highly curved surfaces of a film cooled turbine rotor blade. A computational study of free stream inviscid aerodynamics without cooling at various incidences is followed by well documented measured heat transfer data sets. The heat transfer experiments are discussed for cases with and without film cooling, performed under realistic gas turbine flow conditions in the short duration heat transfer facility of the von Karman Institute for Fluid Dynamics. The precise location of the stagnation point and the iso-Mach number contours in the passage for each incidence (-10°, 0°, 10°, +10°) are presented for a nominal exit Mach number of 0.94. The free stream mass flow rate was kept constant for each experiment at different incidence levels. Three rows of compound angled discrete cooling holes are located near the leading edge in a shower-head configuration. Two rows of staggered discrete cooling holes are located on the suction side and a single row of cooling holes is located on the pressure side. The short duration measurements of quantitative wall heat fluxes on nearly isothermal blade surfaces both in the presence and absence of coolant ejection are presented. The study indicated that the change of the position of the stagnation point strongly altered the aerodynamic behaviour and convective heat transfer to the blade in approximately the first 30 % of both the pressure side and the suction side in the presence and absence of film cooling. The immediate vicinity of the stagnation point was not significantly affected by changing incidence without cooling. Transitional behaviour both on the suction surface and on the pressure surface was significantly influenced by the changes in approch-ing flow direction. Flow separation associated with incidence variations was also observed. Extremely low levels of convective heat transfer coefficients were experienced near the regions where small separation bubbles are located.

Original languageEnglish (US)
Title of host publicationHeat Transfer; Electric Power; Industrial and Cogeneration
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791879078
DOIs
StatePublished - Jan 1 1990
EventASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, GT 1990 - Brussels, Belgium
Duration: Jun 11 1990Jun 14 1990

Publication series

NameProceedings of the ASME Turbo Expo
Volume4

Other

OtherASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, GT 1990
CountryBelgium
CityBrussels
Period6/11/906/14/90

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

Camci, C., & Arts, T. (1990). Effect of incidence on wall heating rates and aerodynamics on a film cooled transonic turbine blade. In Heat Transfer; Electric Power; Industrial and Cogeneration (Proceedings of the ASME Turbo Expo; Vol. 4). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/90GT046