Effect of LiClO 4 on the structure and mobility of PEO-based solid polymer electrolytes

Susan K. Fullerton-Shirey, Janna Kay Maranas

Research output: Contribution to journalArticlepeer-review

172 Scopus citations

Abstract

The relationship between structure, PEO mobility, and ionic conductivity is investigated for the solid polymer electrolyte, PEO/LiClO 4. Amorphous and semicrystalline samples with ether-oxygen-to-lithium ratios ranging from 4:1 to 100:1 are measured. Previous X-ray diffraction results show that three crystalline phases can form in this system depending on the LiClO 4 concentration: (PEO) 3:LiClO 4, pure PEO, and (PEO) 6: LiClO 4. We use SANS to determine that the (PEO) 3:LiClO 4, phase forms cylinders with a radius of 125 Å and a length of 700 A. We also measure the amount and size of pure PEO lamellae by exploiting the neutron scattering length density contrast that arises because of crystallization. The samples are thermally treated such that the (PEO) 6:LiClO 4 phase does not form. QENS is used to measure PEO mobility directly in amorphous and semicrystalline samples, and it reveals two processes. The first process at short times is attributed to the segmental mobility of PEO, and the second process at longer times is attributed to the restricted rotation of protons around the Li + ions. The type of motion and the radius of rotation are consistent with a cylindrical structure observed by diffraction: two PEO chains wrapping around Li + ions in an ether-oxygen-to-lithium ratio of 6:1. By directly comparing structure, mobility, and conductivity of the same samples, we determine that at 50 °C, a semicrystalline sample (concentration of 14:1) has the highest conductivity despite being less mobile, partially crystalline, and having less charge carriers than amorphous samples at the same temperature. The results suggest a decoupling of ionic conductivity and polymer mobility.

Original languageEnglish (US)
Pages (from-to)2142-2156
Number of pages15
JournalMacromolecules
Volume42
Issue number6
DOIs
StatePublished - Mar 24 2009

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Effect of LiClO <sub>4</sub> on the structure and mobility of PEO-based solid polymer electrolytes'. Together they form a unique fingerprint.

Cite this