Effect of load on close-coupled post-injection efficacy for soot reduction in an optical heavy-duty diesel research engine

Jacqueline O'Connor, Mark Musculus

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

The use of close-coupled post injections is an in-cylinder soot-reduction technique that has much promise for high efficiency heavy-duty diesel engines. Close-coupled post injections, short injections of fuel that occur soon after the end of the main fuel injection, have been known to reduce engine-out soot at a wide range of engine operating conditions, including variations in injection timing, exhaust gas recirculation (EGR) level, load, boost, and speed. While many studies have investigated the performance of post injections, the details of the mechanism by which soot is reduced remains unclear. In this study, we have measured the efficacy of post injections over a range of load conditions, at constant speed, boost, and rail pressure, in a heavy-duty optically-accessible research diesel engine. Here, the base load is varied by changing the main-injection duration. Measurements of engine-out soot indicate that not only does the efficacy of a post injection decrease at higher engine loads, but that the range of post-injection durations over which soot reduction is achievable is limited at higher loads. Optical measurements, including the natural luminescence of soot and planar laser-induced incandescence of soot, provide information about the spatiotemporal development of in-cylinder soot through the cycle in cases with and without post-injections. The optical results indicate that the post injection behaves similarly at different loads, but that its relative efficacy decreases due to the increase in soot resulting from longer main-injection durations.

Original languageEnglish (US)
Article number101508
JournalJournal of Engineering for Gas Turbines and Power
Volume136
Issue number10
DOIs
StatePublished - Oct 2014

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Fuel Technology
  • Aerospace Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Effect of load on close-coupled post-injection efficacy for soot reduction in an optical heavy-duty diesel research engine'. Together they form a unique fingerprint.

  • Cite this