TY - JOUR
T1 - Effect of Micromorphology on Alkaline Polymer Electrolyte Stability
AU - Han, Juanjuan
AU - Pan, Jing
AU - Chen, Chen
AU - Wei, Ling
AU - Wang, Yu
AU - Pan, Qiyun
AU - Zhao, Nian
AU - Xie, Bo
AU - Xiao, Li
AU - Lu, Juntao
AU - Zhuang, Lin
N1 - Funding Information:
The authors acknowledge the sponsors. This work was financially supported by the National Natural Science Foundation of China (grant 21802038, 51871091, and 91545205), the Natural Science Foundation of Hubei Province (grant 2018CFB329), Jiangsu Key State Laboratory Cultivation base for Photovoltaic Engineering Science (grant SKLPST201704), and Hubei key Laboratory of Pollutant Analysis & Reuse Technology (grant PA20170202).
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2019/1/9
Y1 - 2019/1/9
N2 - Recent studies demonstrated that the chemical stability of alkaline polymer electrolytes (APEs) could be improved by reducing the inductive effect between cations and backbones. Therefore, pendent cations were recommended. However, microphase-separated morphologies would be generated by elongating the spacer between cations and backbones, which have a significant influence on the chemical stability of APEs too. In order to analyze how the patterns of micromorphology affect the chemical stability of the materials, in the present work, four APEs (a 1 -QAPS, a 3 -QAPS, a 5 -QAPS, and a 7 -QAPS) with different lengths of side chain between polysulfone and quaternary ammonium are synthesized. The longer the side chain is, the more obvious the microphase separation for the a x -QAPS membranes is observed. After immersing in a hot alkaline solution (80 °C, 1 M KOH) for 30 days, a 5 -QAPS exhibits the highest chemical stability. The ion exchange capacity and ionic conductivity of a 5 -QAPS film are reduced by 10.0 and 10.5%, respectively. The weight loss of a 5 -QAPS membrane is 8.0%, which is similar to the value of the pristine backbone. The increased chemical stability can be ascribed to the suitable micromorphology constructed in a 5 -QAPS sample. Besides, a 5 -QAPS membrane shows a high conductivity of 75.5 mS cm -1 , whereas the swelling ratio is limited to 15.0% in liquid water at 80 °C. In addition, a peak power density of 339.1 mW cm -2 is obtained by applying a 5 -QAPS as the APE to the H 2 -O 2 fuel cell at 60 °C.
AB - Recent studies demonstrated that the chemical stability of alkaline polymer electrolytes (APEs) could be improved by reducing the inductive effect between cations and backbones. Therefore, pendent cations were recommended. However, microphase-separated morphologies would be generated by elongating the spacer between cations and backbones, which have a significant influence on the chemical stability of APEs too. In order to analyze how the patterns of micromorphology affect the chemical stability of the materials, in the present work, four APEs (a 1 -QAPS, a 3 -QAPS, a 5 -QAPS, and a 7 -QAPS) with different lengths of side chain between polysulfone and quaternary ammonium are synthesized. The longer the side chain is, the more obvious the microphase separation for the a x -QAPS membranes is observed. After immersing in a hot alkaline solution (80 °C, 1 M KOH) for 30 days, a 5 -QAPS exhibits the highest chemical stability. The ion exchange capacity and ionic conductivity of a 5 -QAPS film are reduced by 10.0 and 10.5%, respectively. The weight loss of a 5 -QAPS membrane is 8.0%, which is similar to the value of the pristine backbone. The increased chemical stability can be ascribed to the suitable micromorphology constructed in a 5 -QAPS sample. Besides, a 5 -QAPS membrane shows a high conductivity of 75.5 mS cm -1 , whereas the swelling ratio is limited to 15.0% in liquid water at 80 °C. In addition, a peak power density of 339.1 mW cm -2 is obtained by applying a 5 -QAPS as the APE to the H 2 -O 2 fuel cell at 60 °C.
UR - http://www.scopus.com/inward/record.url?scp=85059381134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059381134&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b09481
DO - 10.1021/acsami.8b09481
M3 - Article
C2 - 30525423
AN - SCOPUS:85059381134
SN - 1944-8244
VL - 11
SP - 469
EP - 477
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 1
ER -