Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation

Xiaofeng Wang, Hongwei Yang, Beihai Zhou, Xiaomao Wang, Yuefeng Xie

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Four pharmaceuticals (ranitidine, nizatidine, doxylamine, and carbinoxamine) were selected as model compounds to assess the efficiency of four oxidants (ozone (O3), chlorine (Cl2), chlorine dioxide (ClO2) and potassium permanganate (KMnO4)) on the removal of amine-based pharmaceutical and personal care products (PPCPs), as well as the reduction of their N-Nitrosodimethylamine formation potentials (NDMAFPs). The changes in PPCPs and their NDMAFPs during oxidation were quantified using various oxidants and dosages. The relationship between oxidation product structures and NDMAFP changes was also analyzed. The results showed that oxidation with O3, Cl2 and ClO2 were effective in removing the selected PPCPs. However, only ozonation was effective in reducing their NDMAFPs. Ozonation at 6 mg/L removed approximately 90% PPCPs and 90% NDMAFPs for all PPCPs. In addition, the results indicated that ozonation products made little contribution to NDMAFPs. In contrast, some PPCP products had higher NDMAFPs than PPCPs after oxidation with Cl2, ClO2 and KMnO4. There were two possible reaction pathways that led to decrease in NDMAFPs after oxidation. One was oxygen transfer to nitrogen at the tertiary amine site and the other was N-dealkylation from the tertiary amine site.

Original languageEnglish (US)
Pages (from-to)403-411
Number of pages9
JournalWater Research
Volume87
DOIs
StatePublished - Dec 15 2015

All Science Journal Classification (ASJC) codes

  • Ecological Modeling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation'. Together they form a unique fingerprint.

Cite this