Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed 09 Engineering 0907 Environmental Engineering 06 Biological Sciences 0605 Microbiology 09 Engineering 0904 Chemical Engineering

Ozgul Calicioglu, Michael J. Shreve, Thomas Lehman Richard, Rachel Alice Brennan

Research output: Contribution to journalArticle

Abstract

Background: Duckweeds (Lemnaceae) are efficient aquatic plants for wastewater treatment due to their high nutrient-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemical conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating conditions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under mesophilic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed-carboxylic acid conversion of 388 ± 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste. The superior performance observed under these conditions was attributed to both chemical treatment and microbial bioconversion. Hydrogen recovery was only observed under acidic thermophilic conditions, as 23.5 ± 0.5 ml/g of duckweed volatile solids added. More than temperature, pH controlled the overall structure of the microbial communities. For instance, differentially abundant enrichments of Veillonellaceae acidaminococcus were observed in acidic samples, whereas enrichments of Clostridiaceae alkaliphilus were found in the basic samples. Acidic mesophilic conditions were found to enrich acetoclastic methanogenic populations over processing times longer than 10 days. Conclusions: Operating conditions have a significant effect on the yield and composition of the end products resulting from acidogenic digestion of duckweed. Wastewater-derived duckweed is a technically feasible alternative feedstock for the production of advanced biofuel precursors; however, techno-economic analysis is needed to determine integrated full-scale system feasibility and economic viability.

Original languageEnglish (US)
Article number275
JournalBiotechnology for Biofuels
Volume11
Issue number1
DOIs
StatePublished - Oct 8 2018

Fingerprint

Chemical Engineering
Microbiology
Environmental engineering
Biological Science Disciplines
microbiology
Chemical engineering
Biofuels
carboxylic acid
Carboxylic Acids
Carboxylic acids
biofuel
digestion
Digestion
microbial community
community structure
Waste Water
engineering
Feedstocks
Temperature
Wastewater

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • Energy(all)
  • Management, Monitoring, Policy and Law

Cite this

@article{97438f37c9c8471ea8f0f1433eb12b74,
title = "Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed 09 Engineering 0907 Environmental Engineering 06 Biological Sciences 0605 Microbiology 09 Engineering 0904 Chemical Engineering",
abstract = "Background: Duckweeds (Lemnaceae) are efficient aquatic plants for wastewater treatment due to their high nutrient-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemical conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating conditions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under mesophilic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed-carboxylic acid conversion of 388 ± 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste. The superior performance observed under these conditions was attributed to both chemical treatment and microbial bioconversion. Hydrogen recovery was only observed under acidic thermophilic conditions, as 23.5 ± 0.5 ml/g of duckweed volatile solids added. More than temperature, pH controlled the overall structure of the microbial communities. For instance, differentially abundant enrichments of Veillonellaceae acidaminococcus were observed in acidic samples, whereas enrichments of Clostridiaceae alkaliphilus were found in the basic samples. Acidic mesophilic conditions were found to enrich acetoclastic methanogenic populations over processing times longer than 10 days. Conclusions: Operating conditions have a significant effect on the yield and composition of the end products resulting from acidogenic digestion of duckweed. Wastewater-derived duckweed is a technically feasible alternative feedstock for the production of advanced biofuel precursors; however, techno-economic analysis is needed to determine integrated full-scale system feasibility and economic viability.",
author = "Ozgul Calicioglu and Shreve, {Michael J.} and Richard, {Thomas Lehman} and Brennan, {Rachel Alice}",
year = "2018",
month = "10",
day = "8",
doi = "10.1186/s13068-018-1278-6",
language = "English (US)",
volume = "11",
journal = "Biotechnology for Biofuels",
issn = "1754-6834",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed 09 Engineering 0907 Environmental Engineering 06 Biological Sciences 0605 Microbiology 09 Engineering 0904 Chemical Engineering

AU - Calicioglu, Ozgul

AU - Shreve, Michael J.

AU - Richard, Thomas Lehman

AU - Brennan, Rachel Alice

PY - 2018/10/8

Y1 - 2018/10/8

N2 - Background: Duckweeds (Lemnaceae) are efficient aquatic plants for wastewater treatment due to their high nutrient-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemical conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating conditions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under mesophilic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed-carboxylic acid conversion of 388 ± 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste. The superior performance observed under these conditions was attributed to both chemical treatment and microbial bioconversion. Hydrogen recovery was only observed under acidic thermophilic conditions, as 23.5 ± 0.5 ml/g of duckweed volatile solids added. More than temperature, pH controlled the overall structure of the microbial communities. For instance, differentially abundant enrichments of Veillonellaceae acidaminococcus were observed in acidic samples, whereas enrichments of Clostridiaceae alkaliphilus were found in the basic samples. Acidic mesophilic conditions were found to enrich acetoclastic methanogenic populations over processing times longer than 10 days. Conclusions: Operating conditions have a significant effect on the yield and composition of the end products resulting from acidogenic digestion of duckweed. Wastewater-derived duckweed is a technically feasible alternative feedstock for the production of advanced biofuel precursors; however, techno-economic analysis is needed to determine integrated full-scale system feasibility and economic viability.

AB - Background: Duckweeds (Lemnaceae) are efficient aquatic plants for wastewater treatment due to their high nutrient-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemical conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating conditions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under mesophilic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed-carboxylic acid conversion of 388 ± 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste. The superior performance observed under these conditions was attributed to both chemical treatment and microbial bioconversion. Hydrogen recovery was only observed under acidic thermophilic conditions, as 23.5 ± 0.5 ml/g of duckweed volatile solids added. More than temperature, pH controlled the overall structure of the microbial communities. For instance, differentially abundant enrichments of Veillonellaceae acidaminococcus were observed in acidic samples, whereas enrichments of Clostridiaceae alkaliphilus were found in the basic samples. Acidic mesophilic conditions were found to enrich acetoclastic methanogenic populations over processing times longer than 10 days. Conclusions: Operating conditions have a significant effect on the yield and composition of the end products resulting from acidogenic digestion of duckweed. Wastewater-derived duckweed is a technically feasible alternative feedstock for the production of advanced biofuel precursors; however, techno-economic analysis is needed to determine integrated full-scale system feasibility and economic viability.

UR - http://www.scopus.com/inward/record.url?scp=85054922504&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054922504&partnerID=8YFLogxK

U2 - 10.1186/s13068-018-1278-6

DO - 10.1186/s13068-018-1278-6

M3 - Article

VL - 11

JO - Biotechnology for Biofuels

JF - Biotechnology for Biofuels

SN - 1754-6834

IS - 1

M1 - 275

ER -