Effect of Si-C bond formation in 20 keV C60 bombardment of Si

Kristin D. Krantzman, Barbara J. Garrison

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We have performed molecular dynamics (MD) simulations to investigate the effect of Si-C bond formation on fluence-dependent results in 20 keV C 60 bombardment of Si. Sputter depth profiling experiments of C 60 on Si have produced atypical results, which are thought to be caused by the strong covalent bonds that are formed between the C atoms in the projectile and Si atoms in the substrate. A recently developed scheme developed by Russo, et al.8 has been adapted to perform MD simulations of 150 successive impacts of 20 keV C60 on Si, which corresponds to a total fluence of 2.64 × 1013 impacts/cm2. In order to isolate the effects of Si-C bond formation, the same set of trajectories is calculated with and without the attractive Si-C potential energy terms. When Si-C bonds are able to form, nearly all the C atoms from the projectile are incorporated into the substrate. When the possibility of Si-C bond formation is removed, most of the C atoms are backscattered into the vacuum. The cumulative result is that the substrate with Si-C bonds contains a factor of twenty times more C atoms, which are located below the surface.

Original languageEnglish (US)
Pages (from-to)123-125
Number of pages3
JournalSurface and Interface Analysis
Volume43
Issue number1-2
DOIs
StatePublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of Si-C bond formation in 20 keV C<sub>60</sub> bombardment of Si'. Together they form a unique fingerprint.

Cite this