Effects of Aromatic Isothiocyanates on Tumorigenicity, O6-Methylguanine Formation, and Metabolism of the Tobacco-specific Nitrosamine 4-(Methylnitrosamino)-l-(3-pyridyl)-l-butanone in A/J Mouse Lung

Mark A. Morse, Shantu Amin, Stephen S. Hecht, Fung Lung Chung

Research output: Contribution to journalArticle

199 Scopus citations

Abstract

Phenethyl isothiocyanate (PEITC), benzyl isothiocyanate (BITC), and phenyl isothiocyanate (PITC) were tested for their abilities to inhibit lung tumorigenesis and O6-methylguanine formation in lung DNA induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-l-(3-pyridyl)-1-butanone (NNK) in A/J mice. Pretreatment with PEITC for 4 consecutive days at daily doses of 5 or 25 µmol inhibited tumor multiplicity induced by a single 10-µmol dose of NNK by approximately 70% or 97%, respectively. The 25-µmol daily dose of PEITC also reduced the percentage of animals that developed tumors by 70%. In contrast, both BITC and PITC failed to significantly reduce tumor multiplicity or the percentages of mice that developed tumors. Using an identical dosing regimen, parallel results were observed in the effects of these isothiocyanates on O6-methylguanine formation in the lung, in which PEITC at either dose resulted in considerable inhibition at 2 or 6 h after NNK administration, while BITC or PITC had little effect. PEITC was further tested for its ability to inhibit lung microsomal metabolism of NNK. A single administration of PEITC (5 or 25 µmol) resulted in 90% inhibition of NNK metabolism. These results in conjunction with recent results obtained using F344 rats firmly establish PEITC as an effective inhibitor of NNK lung tumorigenesis and suggest that the basis of this inhibition is the reduction of DNA adduct formation caused by the inhibition of enzymes responsible for NNK activation.

Original languageEnglish (US)
Pages (from-to)2894-2897
Number of pages4
JournalCancer Research
Volume49
Issue number11
Publication statusPublished - Jun 1 1989

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this