TY - JOUR
T1 - Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants
AU - Arteca, Richard N.
AU - Arteca, Jeannette M.
N1 - Funding Information:
This is contribution no. 463 of the Department of Horticulture, The Pennsylvania State University and was supported in part by the Pennsylvania Agricultural Experiment Station project number 4106.
PY - 2008/8
Y1 - 2008/8
N2 - Inflorescence stalks produced the highest amount of ethylene in response to IAA as compared with other plant parts tested. Leaf age had an effect on IAA-induced ethylene with the youngest leaves showing the greatest stimulation. The highest amount of IAA-induced ethylene was produced in the root or inflorescence tip with regions below this producing less. Inflorescence stalks treated with IAA, 2,4-D, or NAA over a range of concentrations exhibited an increase in ethylene production starting at 1 μM with increasingly greater responses up to 100 μM, followed by a plateau at 500 μM and a significant decline at 1000 μM. Both 2,4-D and NAA elicited a greater response than IAA at all concentrations tested in inflorescence stalks. Inflorescence leaves treated with IAA, 2,4-D, or NAA exhibited the same trend as inflorescence stalks. However, they produced significantly less ethylene. Inflorescence stalks and leaves treated with 100 μM IAA exhibited a dramatic increase in ethylene production 2 h following treatment initiation. Inflorescence stalks showed a further increase 4 h following treatment initiation and no further increase at 6 h. However, there was a slight decline between 6 h and 24 h. Inflorescence leaves exhibited similar rates of IAA-induced ethylene between 2 h and 24 h. Light and high temperature caused a decrease in IAA-induced ethylene in both inflorescence stalks and leaves. Three auxin-insensitive mutants were evaluated for their inflorescence's responsiveness to IAA. aux2 did not produce ethylene in response to 100 μM IAA, while axr1-3 and axr1-12 showed reduced levels of IAA-induced ethylene as compared with Columbia wild type. Inflorescences treated with brassinolide alone had no effect on ethylene production. However, when brassinolide was used in combination with IAA there was a dramatic increase in ethylene production above the induction promoted by IAA alone.
AB - Inflorescence stalks produced the highest amount of ethylene in response to IAA as compared with other plant parts tested. Leaf age had an effect on IAA-induced ethylene with the youngest leaves showing the greatest stimulation. The highest amount of IAA-induced ethylene was produced in the root or inflorescence tip with regions below this producing less. Inflorescence stalks treated with IAA, 2,4-D, or NAA over a range of concentrations exhibited an increase in ethylene production starting at 1 μM with increasingly greater responses up to 100 μM, followed by a plateau at 500 μM and a significant decline at 1000 μM. Both 2,4-D and NAA elicited a greater response than IAA at all concentrations tested in inflorescence stalks. Inflorescence leaves treated with IAA, 2,4-D, or NAA exhibited the same trend as inflorescence stalks. However, they produced significantly less ethylene. Inflorescence stalks and leaves treated with 100 μM IAA exhibited a dramatic increase in ethylene production 2 h following treatment initiation. Inflorescence stalks showed a further increase 4 h following treatment initiation and no further increase at 6 h. However, there was a slight decline between 6 h and 24 h. Inflorescence leaves exhibited similar rates of IAA-induced ethylene between 2 h and 24 h. Light and high temperature caused a decrease in IAA-induced ethylene in both inflorescence stalks and leaves. Three auxin-insensitive mutants were evaluated for their inflorescence's responsiveness to IAA. aux2 did not produce ethylene in response to 100 μM IAA, while axr1-3 and axr1-12 showed reduced levels of IAA-induced ethylene as compared with Columbia wild type. Inflorescences treated with brassinolide alone had no effect on ethylene production. However, when brassinolide was used in combination with IAA there was a dramatic increase in ethylene production above the induction promoted by IAA alone.
UR - http://www.scopus.com/inward/record.url?scp=49449086751&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49449086751&partnerID=8YFLogxK
U2 - 10.1093/jxb/ern159
DO - 10.1093/jxb/ern159
M3 - Article
C2 - 18583350
AN - SCOPUS:49449086751
SN - 0022-0957
VL - 59
SP - 3019
EP - 3026
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 11
ER -