Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination

Yuqin Mao, Di Guo, Weikun Yao, Xiaomao Wang, Hongwei Yang, Yuefeng F. Xie, Sridhar Komarneni, Gang Yu, Yujue Wang

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H2O2) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O3) to hydroxyl radicals ([rad]OH) by electro-generated H2O2, the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO3 ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation.

Original languageEnglish (US)
Pages (from-to)322-332
Number of pages11
JournalWater Research
Volume130
DOIs
StatePublished - Mar 1 2018

All Science Journal Classification (ASJC) codes

  • Ecological Modeling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint Dive into the research topics of 'Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination'. Together they form a unique fingerprint.

  • Cite this