Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner-Part 1: Overall Effectiveness Measurements

Adam C. Shrager, Karen A. Thole, Dominic Mongillo

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The complex flow field in a gas turbine combustor makes cooling the liner walls a challenge. In particular, this paper is primarily focused on the region surrounding the dilution holes, which is especially challenging to cool due to the interaction between the effusion cooling jets and high-momentum dilution jets. This study presents overall effectiveness measurements for three different cooling hole patterns of a double-walled combustor liner. Only effusion hole patterns near the dilution holes were varied, which included: no effusion cooling; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. The doublewalled liner contained both impingement and effusion plates as well as a row of dilution jets. Infrared thermography was used to measure the surface temperature of the combustor liners at multiple dilution jet momentum flux ratios and approaching freestream turbulence intensities of 0.5% and 13%. Results showed that the outward and inward geometries were able to more effectively cool the region surrounding the dilution hole compared to the closed case. A significant amount of the cooling enhancement in the outward and inward cases came from in-hole convection. Downstream of the dilution hole, the interactions between the inward effusion holes and the dilution jet led to lower levels of effectiveness compared to the other two geometries. High freestream turbulence caused a small decrease in overall effectiveness over the entire liner and was most impactful in the first three rows of effusion holes.

Original languageEnglish (US)
Article number011022
JournalJournal of Engineering for Gas Turbines and Power
Volume141
Issue number1
DOIs
StatePublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Fuel Technology
  • Aerospace Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner-Part 1: Overall Effectiveness Measurements'. Together they form a unique fingerprint.

Cite this