Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation

Megan M. Weivoda, Raymond Hohl

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (HMGCR), the first step of the isoprenoid biosynthetic pathway, leading to the depletion of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The effects of statins on bone have previously been attributed to the depletion of GGPP, because the addition of exogenous GGPP prevented statin-stimulated osteoblast differentiation in vitro. However, in a recent report, we demonstrated that the specific depletion of GGPP did not stimulate but, in fact, inhibited osteoblast differentiation. This led us to hypothesize that isoprenoids upstream of GGPP play a role in the regulation of osteoblast differentiation. We demonstrate here that the expression of HMGCR and FPP synthase decreased during primary calvarial osteoblast differentiation, correlating with decreased FPP and GGPP levels during differentiation. Zaragozic acid (ZGA) inhibits the isoprenoid biosynthetic pathway enzyme squalene synthase, leading to an accumulation of the squalene synthase substrate FPP. ZGA treatment of calvarial osteoblasts led to a significant increase in intracellular FPP and resulted in inhibition of osteoblast differentiation as measured by osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization. Simultaneous HMGCR inhibition prevented the accumulation of FPP and restored osteoblast differentiation. In contrast, specifically inhibiting GGPPS to lower the ZGA-induced increase in GGPP did not restore osteoblast differentiation. The specificity of HMGCR inhibition to restore osteoblast differentiation of ZGA-treated cultures through the reduction in isoprenoid accumulation was confirmed with the addition of exogenous mevalonate. Similar to ZGA treatment, exogenous FPP inhibited the mineralization of primary calvarial osteoblasts. Interestingly, the effects of FPP accumulation on osteoblasts were found to be independent of protein farnesylation. Our findings are the first to demonstrate that the accumulation of FPP impairs osteoblast differentiation and suggests that the depletion of this isoprenoid may be necessary for normal and statin-induced bone formation.

Original languageEnglish (US)
Pages (from-to)3113-3122
Number of pages10
JournalEndocrinology
Volume152
Issue number8
DOIs
StatePublished - Aug 1 2011

Fingerprint

Osteoblasts
Terpenes
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Oxidoreductases
Coenzyme A
Farnesyl-Diphosphate Farnesyltransferase
Acids
Biosynthetic Pathways
Osteogenesis
farnesyl pyrophosphate
Protein Prenylation
Mevalonic Acid
geranylgeranyl pyrophosphate
Alkaline Phosphatase
Cholesterol
Gene Expression

All Science Journal Classification (ASJC) codes

  • Endocrinology

Cite this

@article{e5bd34b201594eeebe6d2b092369f2e6,
title = "Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation",
abstract = "Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (HMGCR), the first step of the isoprenoid biosynthetic pathway, leading to the depletion of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The effects of statins on bone have previously been attributed to the depletion of GGPP, because the addition of exogenous GGPP prevented statin-stimulated osteoblast differentiation in vitro. However, in a recent report, we demonstrated that the specific depletion of GGPP did not stimulate but, in fact, inhibited osteoblast differentiation. This led us to hypothesize that isoprenoids upstream of GGPP play a role in the regulation of osteoblast differentiation. We demonstrate here that the expression of HMGCR and FPP synthase decreased during primary calvarial osteoblast differentiation, correlating with decreased FPP and GGPP levels during differentiation. Zaragozic acid (ZGA) inhibits the isoprenoid biosynthetic pathway enzyme squalene synthase, leading to an accumulation of the squalene synthase substrate FPP. ZGA treatment of calvarial osteoblasts led to a significant increase in intracellular FPP and resulted in inhibition of osteoblast differentiation as measured by osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization. Simultaneous HMGCR inhibition prevented the accumulation of FPP and restored osteoblast differentiation. In contrast, specifically inhibiting GGPPS to lower the ZGA-induced increase in GGPP did not restore osteoblast differentiation. The specificity of HMGCR inhibition to restore osteoblast differentiation of ZGA-treated cultures through the reduction in isoprenoid accumulation was confirmed with the addition of exogenous mevalonate. Similar to ZGA treatment, exogenous FPP inhibited the mineralization of primary calvarial osteoblasts. Interestingly, the effects of FPP accumulation on osteoblasts were found to be independent of protein farnesylation. Our findings are the first to demonstrate that the accumulation of FPP impairs osteoblast differentiation and suggests that the depletion of this isoprenoid may be necessary for normal and statin-induced bone formation.",
author = "Weivoda, {Megan M.} and Raymond Hohl",
year = "2011",
month = "8",
day = "1",
doi = "10.1210/en.2011-0016",
language = "English (US)",
volume = "152",
pages = "3113--3122",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "8",

}

Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation. / Weivoda, Megan M.; Hohl, Raymond.

In: Endocrinology, Vol. 152, No. 8, 01.08.2011, p. 3113-3122.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation

AU - Weivoda, Megan M.

AU - Hohl, Raymond

PY - 2011/8/1

Y1 - 2011/8/1

N2 - Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (HMGCR), the first step of the isoprenoid biosynthetic pathway, leading to the depletion of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The effects of statins on bone have previously been attributed to the depletion of GGPP, because the addition of exogenous GGPP prevented statin-stimulated osteoblast differentiation in vitro. However, in a recent report, we demonstrated that the specific depletion of GGPP did not stimulate but, in fact, inhibited osteoblast differentiation. This led us to hypothesize that isoprenoids upstream of GGPP play a role in the regulation of osteoblast differentiation. We demonstrate here that the expression of HMGCR and FPP synthase decreased during primary calvarial osteoblast differentiation, correlating with decreased FPP and GGPP levels during differentiation. Zaragozic acid (ZGA) inhibits the isoprenoid biosynthetic pathway enzyme squalene synthase, leading to an accumulation of the squalene synthase substrate FPP. ZGA treatment of calvarial osteoblasts led to a significant increase in intracellular FPP and resulted in inhibition of osteoblast differentiation as measured by osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization. Simultaneous HMGCR inhibition prevented the accumulation of FPP and restored osteoblast differentiation. In contrast, specifically inhibiting GGPPS to lower the ZGA-induced increase in GGPP did not restore osteoblast differentiation. The specificity of HMGCR inhibition to restore osteoblast differentiation of ZGA-treated cultures through the reduction in isoprenoid accumulation was confirmed with the addition of exogenous mevalonate. Similar to ZGA treatment, exogenous FPP inhibited the mineralization of primary calvarial osteoblasts. Interestingly, the effects of FPP accumulation on osteoblasts were found to be independent of protein farnesylation. Our findings are the first to demonstrate that the accumulation of FPP impairs osteoblast differentiation and suggests that the depletion of this isoprenoid may be necessary for normal and statin-induced bone formation.

AB - Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. Statins inhibit 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (HMGCR), the first step of the isoprenoid biosynthetic pathway, leading to the depletion of the isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The effects of statins on bone have previously been attributed to the depletion of GGPP, because the addition of exogenous GGPP prevented statin-stimulated osteoblast differentiation in vitro. However, in a recent report, we demonstrated that the specific depletion of GGPP did not stimulate but, in fact, inhibited osteoblast differentiation. This led us to hypothesize that isoprenoids upstream of GGPP play a role in the regulation of osteoblast differentiation. We demonstrate here that the expression of HMGCR and FPP synthase decreased during primary calvarial osteoblast differentiation, correlating with decreased FPP and GGPP levels during differentiation. Zaragozic acid (ZGA) inhibits the isoprenoid biosynthetic pathway enzyme squalene synthase, leading to an accumulation of the squalene synthase substrate FPP. ZGA treatment of calvarial osteoblasts led to a significant increase in intracellular FPP and resulted in inhibition of osteoblast differentiation as measured by osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization. Simultaneous HMGCR inhibition prevented the accumulation of FPP and restored osteoblast differentiation. In contrast, specifically inhibiting GGPPS to lower the ZGA-induced increase in GGPP did not restore osteoblast differentiation. The specificity of HMGCR inhibition to restore osteoblast differentiation of ZGA-treated cultures through the reduction in isoprenoid accumulation was confirmed with the addition of exogenous mevalonate. Similar to ZGA treatment, exogenous FPP inhibited the mineralization of primary calvarial osteoblasts. Interestingly, the effects of FPP accumulation on osteoblasts were found to be independent of protein farnesylation. Our findings are the first to demonstrate that the accumulation of FPP impairs osteoblast differentiation and suggests that the depletion of this isoprenoid may be necessary for normal and statin-induced bone formation.

UR - http://www.scopus.com/inward/record.url?scp=79960738080&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79960738080&partnerID=8YFLogxK

U2 - 10.1210/en.2011-0016

DO - 10.1210/en.2011-0016

M3 - Article

VL - 152

SP - 3113

EP - 3122

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 8

ER -