Effects of high-starch or high-fat diets formulated to be isoenergetic on energy and nitrogen partitioning and utilization in lactating Jersey cows

D. L. Morris, T. M. Brown-Brandl, K. E. Hales, K. J. Harvatine, P. J. Kononoff

Research output: Contribution to journalArticle

Abstract

The objective of this study was to determine the effects of high-starch or high-fat diets formulated to be isoenergetic on energy and N partitioning and utilization of energy. Twelve multiparous Jersey cows (mean ± standard deviation; 192 ± 11 d in milk; 467 ± 47 kg) in a crossover design with 28-d periods (24-d adaptation and 4-d collection) were used to compare 2 treatment diets. Treatments were high starch (HS; 30.8% starch, 31.8% neutral detergent fiber, and 1.9% fatty acids) or high fat (HF; 16.8% starch, 41.7% neutral detergent fiber, and 4.1% fatty acids). Diets were formulated to have net energy for lactation (NEL) content of 1.55 Mcal/kg of dry matter according to the National Research Council (2001) dairy model. Nutrient composition was varied primarily by replacing corn grain in HS with a rumen-inert fat source and cottonseed hulls in HF. Gross energy content was lower for HS (4.43 vs. 4.54 ± 0.01 Mcal/kg of dry matter), whereas digestible (2.93 vs. 2.74 ± 0.035 Mcal/kg of dry matter) and metabolizable energy (2.60 vs. 2.41 ± 0.030 Mcal/kg of dry matter), and NEL (1.83 vs. 1.67 ± 0.036 Mcal/kg of dry matter) content were all greater than for HF. Tissue energy deposited as body fat tended to be greater for HS (4.70 vs. 2.14 ± 1.01 Mcal/d). For N partitioning, HS increased milk N secretion (141 vs. 131 ± 10.5 g/d) and decreased urinary N excretion (123 vs. 150 ± 6.4 g/d). Compared with HF, HS increased apparent total-tract digestibility of dry matter (66.7 vs. 61.7 ± 1.06%), organic matter (68.5 vs. 63.2 ± 0.98%), energy (66.0 vs. 60.4 ± 0.92%), and 18-carbon fatty acids (67.9 vs. 61.2 ± 1.60%). However, apparent total-tract digestibility of starch decreased for HS from 97.0 to 94.5 ± 0.48%. Compared with HF, HS tended to increase milk yield (19.7 vs. 18.9 ± 1.38 kg/d), milk protein content (4.03 vs. 3.93 ± 0.10%), milk protein yield (0.791 vs. 0.740 ± 0.050 kg/d), and milk lactose yield (0.897 vs. 0.864 ± 0.067 kg/d). In addition, HS decreased milk fat content (5.93 vs. 6.37 ± 0.15%) but did not affect milk fat yield (average of 1.19 ± 0.09 kg/d) or energy-corrected milk yield (average of 27.2 ± 1.99 kg/d). Results of the current study suggest that the HS diet had a greater metabolizable energy and NEL content, increased partitioning of N toward milk secretion and away from urinary excretion, and may have increased partitioning of energy toward tissue energy deposited as fat.

Original languageEnglish (US)
Pages (from-to)4378-4389
Number of pages12
JournalJournal of dairy science
Volume103
Issue number5
DOIs
StatePublished - May 2020

All Science Journal Classification (ASJC) codes

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint Dive into the research topics of 'Effects of high-starch or high-fat diets formulated to be isoenergetic on energy and nitrogen partitioning and utilization in lactating Jersey cows'. Together they form a unique fingerprint.

  • Cite this