Effects of temperature on gene expression in embryos of the coral Montastraea faveolata

Christian R. Voolstra, Julia Schnetzer, Leonid Peshkin, Carly J. Randall, Alina M. Szmant, Mónica Medina

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

Background: Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5°C, 29.0°C, and 31.5°C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours.Results: Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress.Conclusions: Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0°C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5°C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.

Original languageEnglish (US)
Article number627
JournalBMC genomics
Volume10
DOIs
StatePublished - Dec 23 2009

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Genetics

Fingerprint Dive into the research topics of 'Effects of temperature on gene expression in embryos of the coral Montastraea faveolata'. Together they form a unique fingerprint.

Cite this