Effects of varying streamwise and spanwise spacing in pin-fin arrays

Jason K. Ostanek, Karen Ann Thole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Citations (SciVal)

Abstract

Pin-fin channels are commonly used for cooling the trailing edges in turbine blades and vanes. While many studies have investigated heat transfer performance of pin-fin channels, few studies have investigated pin-fin flowfields. The present study compares the time-dependent near wake flow and the time-mean surface heat transfer for varying pin-fin configurations at a Reynolds number of 2.0e4. Pin-fin aspect ratio showed little influence on pin-surface heat transfer coefficients when increasing H/D from 1.0 to 2.0. Changes in streamwise and spanwise spacing, however, were found to significantly impact the behavior of the near wake flow and local heat transfer coefficients. Decreasing spanwise spacing from S/D = 3.0 to 1.5 in a single pin-fin row was found to suppress downstream vortex shedding and create biased, asymmetric wakes. Local heat transfer coefficients on the trailing side of the pin-fin reflected that vortex shedding, observed for spanwise spacings S/D ≥ 2.0, was beneficial for heat transfer on the pin-surface. Similarly, decreasing streamwise spacing from X/D = 3.03 to 2.16 was found to suppress vortex shedding in the first row of a seven row array. For those cases that support vortex shedding, X/D ≥ 2.60, pin-fin heat transfer increased on the trailing side but array heat transfer in downstream rows decreased.

Original languageEnglish (US)
Title of host publicationASME Turbo Expo 2012
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2012
Pages45-57
Number of pages13
EditionPARTS A AND B
DOIs
StatePublished - Dec 1 2012
EventASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012 - Copenhagen, Denmark
Duration: Jun 11 2012Jun 15 2012

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume4

Other

OtherASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012
Country/TerritoryDenmark
CityCopenhagen
Period6/11/126/15/12

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Effects of varying streamwise and spanwise spacing in pin-fin arrays'. Together they form a unique fingerprint.

Cite this