TY - JOUR
T1 - Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling
AU - Marker, Cassie
AU - Shang, Shun Li
AU - Zhao, Ji Cheng
AU - Liu, Zi Kui
N1 - Funding Information:
This work was financially supported by National Science Foundation (NSF) with Grant Nos. CMMI-1333999 and National Research Trainee Fellowship under grant DGE-1449785. First-principles calculations were carried out partially on the LION clusters at the Pennsylvania State University, partially on the resources of NERSC supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, and partially on the resources of XSEDE supported by NSF with Grant No. ACI-1053575.
Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12
Y1 - 2017/12
N2 - Titanium alloys are being investigated as suitable materials for load-bearing implants because of their biocompatibility and mechanical properties. Stress shielding, a common issue with the current load-bearing implant materials, occurs due to a Young's modulus (E) mismatch between bone (∼10–40 GPa) and implants (such as Ti-6Al-4V ∼110 GPa), which leads to bone dying around the implant and ultimately implant failure. Reducing the Young's modulus of Ti alloys may overcome the issues of stress shielding and improve implant materials. In the present work, first-principles calculations have been used to predict the single crystal elastic stiffness coefficients (cij’s) for the Ti-containing ternary alloys Ti-X-Y (X ≠ Y = Mo, Nb, Sn, Ta, Zr) in the bcc lattice. It is found that the ternary Ti-X-Y (X ≠ Y = Mo, Nb, Ta) alloys behave similarly; so do the ternary Ti-X-Sn (X = Mo, Nb, Ta) alloys and the Ti-X-Zr (X = Mo, Nb, Ta) alloys. This is expected due to the similarity between the Mo, Nb and Ta elements. The results also show that the Ti-Zr-X alloys stabilized the bcc phase at lower alloying concentrations. The polycrystalline aggregate properties are also estimated from the cij’s, including bulk modulus, shear modulus and Young's modulus. The results show that Ti-alloys with compositions close to the bcc stability limit have the lowest E. In combination with previous predictions, a complete elastic database has been established using the CALPHAD (CALculation of PHAse Diagram) based modeling approach. The database results are compared with the E of higher order Ti alloys and shown to be able to predict the E accurately. This complete database forms a foundation to tailor Ti alloys for desired elastic properties.
AB - Titanium alloys are being investigated as suitable materials for load-bearing implants because of their biocompatibility and mechanical properties. Stress shielding, a common issue with the current load-bearing implant materials, occurs due to a Young's modulus (E) mismatch between bone (∼10–40 GPa) and implants (such as Ti-6Al-4V ∼110 GPa), which leads to bone dying around the implant and ultimately implant failure. Reducing the Young's modulus of Ti alloys may overcome the issues of stress shielding and improve implant materials. In the present work, first-principles calculations have been used to predict the single crystal elastic stiffness coefficients (cij’s) for the Ti-containing ternary alloys Ti-X-Y (X ≠ Y = Mo, Nb, Sn, Ta, Zr) in the bcc lattice. It is found that the ternary Ti-X-Y (X ≠ Y = Mo, Nb, Ta) alloys behave similarly; so do the ternary Ti-X-Sn (X = Mo, Nb, Ta) alloys and the Ti-X-Zr (X = Mo, Nb, Ta) alloys. This is expected due to the similarity between the Mo, Nb and Ta elements. The results also show that the Ti-Zr-X alloys stabilized the bcc phase at lower alloying concentrations. The polycrystalline aggregate properties are also estimated from the cij’s, including bulk modulus, shear modulus and Young's modulus. The results show that Ti-alloys with compositions close to the bcc stability limit have the lowest E. In combination with previous predictions, a complete elastic database has been established using the CALPHAD (CALculation of PHAse Diagram) based modeling approach. The database results are compared with the E of higher order Ti alloys and shown to be able to predict the E accurately. This complete database forms a foundation to tailor Ti alloys for desired elastic properties.
UR - http://www.scopus.com/inward/record.url?scp=85028941719&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028941719&partnerID=8YFLogxK
U2 - 10.1016/j.commatsci.2017.08.037
DO - 10.1016/j.commatsci.2017.08.037
M3 - Article
AN - SCOPUS:85028941719
SN - 0927-0256
VL - 140
SP - 121
EP - 139
JO - Computational Materials Science
JF - Computational Materials Science
ER -