Electrically-assisted forming of magnesium AZ31: Effect of current magnitude and deformation rate on forgeability

Joshua J. Jones, Laine Mears, John Timothy Roth

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Currently, the automotive and aircraft industries are considering increasing the use of magnesium within their products due to its favorable strength-to-weight characteristics. However, the implementation of this material is limited as a result of its formability. Partially addressing this issue, previous research has shown that electrically-assisted forming (EAF) improves the tensile formability of magnesium sheet metal. While these results are highly beneficial toward fabricating the skin of the vehicle, a technique for allowing the use of magnesium alloys in the production of the structural/mechanical components is also desirable. Given the influence that EAF has already exhibited on tensile deformation, the research herein focuses on incorporating this technique within compressive operations. The potential benefit of using EAF on compressive processes has been demonstrated in related research where other materials, such as titanium and aluminum, have shown improved compressive behavior. Therefore, this research endeavors to amalgamate these findings to Mg AZ31B-O, which is traditionally hard to forge. As such, to demonstrate the effects of EAF on this alloy, two series of tests were performed. First, the sensitivity of the alloy to the EAF process was determined by varying the current density and platen speed during an upsetting process (flat dies). Then, the ability to utilize impression (shaped) dies was examined. Through this study, it was shown for the first time that the EAF process increases the forgeability of this magnesium alloy through improvements such as decreased machine force requirements and increased achievable deformation. Additionally, the ability to form the desired final specimen geometry was achieved. Furthermore, this work also showed that this alloy is sensitive to any deformation rate changes when utilizing the EAF process. Last, a threshold current density was noted for this material where significant forgeability improvements could be realized once exceeded.

Original languageEnglish (US)
Article number034504-034504-7
JournalJournal of Manufacturing Science and Engineering, Transactions of the ASME
Volume134
Issue number3
DOIs
StatePublished - Jun 20 2012

Fingerprint

Magnesium
Formability
Magnesium alloys
Threshold current density
Sheet metal
Skin
Current density
Titanium
Aircraft
Aluminum
Geometry
Industry

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Computer Science Applications
  • Industrial and Manufacturing Engineering

Cite this

@article{763f8ae2d4b84f3e803be2271fb0c833,
title = "Electrically-assisted forming of magnesium AZ31: Effect of current magnitude and deformation rate on forgeability",
abstract = "Currently, the automotive and aircraft industries are considering increasing the use of magnesium within their products due to its favorable strength-to-weight characteristics. However, the implementation of this material is limited as a result of its formability. Partially addressing this issue, previous research has shown that electrically-assisted forming (EAF) improves the tensile formability of magnesium sheet metal. While these results are highly beneficial toward fabricating the skin of the vehicle, a technique for allowing the use of magnesium alloys in the production of the structural/mechanical components is also desirable. Given the influence that EAF has already exhibited on tensile deformation, the research herein focuses on incorporating this technique within compressive operations. The potential benefit of using EAF on compressive processes has been demonstrated in related research where other materials, such as titanium and aluminum, have shown improved compressive behavior. Therefore, this research endeavors to amalgamate these findings to Mg AZ31B-O, which is traditionally hard to forge. As such, to demonstrate the effects of EAF on this alloy, two series of tests were performed. First, the sensitivity of the alloy to the EAF process was determined by varying the current density and platen speed during an upsetting process (flat dies). Then, the ability to utilize impression (shaped) dies was examined. Through this study, it was shown for the first time that the EAF process increases the forgeability of this magnesium alloy through improvements such as decreased machine force requirements and increased achievable deformation. Additionally, the ability to form the desired final specimen geometry was achieved. Furthermore, this work also showed that this alloy is sensitive to any deformation rate changes when utilizing the EAF process. Last, a threshold current density was noted for this material where significant forgeability improvements could be realized once exceeded.",
author = "Jones, {Joshua J.} and Laine Mears and Roth, {John Timothy}",
year = "2012",
month = "6",
day = "20",
doi = "10.1115/1.4006547",
language = "English (US)",
volume = "134",
journal = "Journal of Manufacturing Science and Engineering, Transactions of the ASME",
issn = "1087-1357",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "3",

}

TY - JOUR

T1 - Electrically-assisted forming of magnesium AZ31

T2 - Effect of current magnitude and deformation rate on forgeability

AU - Jones, Joshua J.

AU - Mears, Laine

AU - Roth, John Timothy

PY - 2012/6/20

Y1 - 2012/6/20

N2 - Currently, the automotive and aircraft industries are considering increasing the use of magnesium within their products due to its favorable strength-to-weight characteristics. However, the implementation of this material is limited as a result of its formability. Partially addressing this issue, previous research has shown that electrically-assisted forming (EAF) improves the tensile formability of magnesium sheet metal. While these results are highly beneficial toward fabricating the skin of the vehicle, a technique for allowing the use of magnesium alloys in the production of the structural/mechanical components is also desirable. Given the influence that EAF has already exhibited on tensile deformation, the research herein focuses on incorporating this technique within compressive operations. The potential benefit of using EAF on compressive processes has been demonstrated in related research where other materials, such as titanium and aluminum, have shown improved compressive behavior. Therefore, this research endeavors to amalgamate these findings to Mg AZ31B-O, which is traditionally hard to forge. As such, to demonstrate the effects of EAF on this alloy, two series of tests were performed. First, the sensitivity of the alloy to the EAF process was determined by varying the current density and platen speed during an upsetting process (flat dies). Then, the ability to utilize impression (shaped) dies was examined. Through this study, it was shown for the first time that the EAF process increases the forgeability of this magnesium alloy through improvements such as decreased machine force requirements and increased achievable deformation. Additionally, the ability to form the desired final specimen geometry was achieved. Furthermore, this work also showed that this alloy is sensitive to any deformation rate changes when utilizing the EAF process. Last, a threshold current density was noted for this material where significant forgeability improvements could be realized once exceeded.

AB - Currently, the automotive and aircraft industries are considering increasing the use of magnesium within their products due to its favorable strength-to-weight characteristics. However, the implementation of this material is limited as a result of its formability. Partially addressing this issue, previous research has shown that electrically-assisted forming (EAF) improves the tensile formability of magnesium sheet metal. While these results are highly beneficial toward fabricating the skin of the vehicle, a technique for allowing the use of magnesium alloys in the production of the structural/mechanical components is also desirable. Given the influence that EAF has already exhibited on tensile deformation, the research herein focuses on incorporating this technique within compressive operations. The potential benefit of using EAF on compressive processes has been demonstrated in related research where other materials, such as titanium and aluminum, have shown improved compressive behavior. Therefore, this research endeavors to amalgamate these findings to Mg AZ31B-O, which is traditionally hard to forge. As such, to demonstrate the effects of EAF on this alloy, two series of tests were performed. First, the sensitivity of the alloy to the EAF process was determined by varying the current density and platen speed during an upsetting process (flat dies). Then, the ability to utilize impression (shaped) dies was examined. Through this study, it was shown for the first time that the EAF process increases the forgeability of this magnesium alloy through improvements such as decreased machine force requirements and increased achievable deformation. Additionally, the ability to form the desired final specimen geometry was achieved. Furthermore, this work also showed that this alloy is sensitive to any deformation rate changes when utilizing the EAF process. Last, a threshold current density was noted for this material where significant forgeability improvements could be realized once exceeded.

UR - http://www.scopus.com/inward/record.url?scp=84862302498&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862302498&partnerID=8YFLogxK

U2 - 10.1115/1.4006547

DO - 10.1115/1.4006547

M3 - Article

AN - SCOPUS:84862302498

VL - 134

JO - Journal of Manufacturing Science and Engineering, Transactions of the ASME

JF - Journal of Manufacturing Science and Engineering, Transactions of the ASME

SN - 1087-1357

IS - 3

M1 - 034504-034504-7

ER -