Electro-strengthening of the additively manufactured Ti–6Al–4V alloy

Daudi Waryoba, Zahabul Islam, Ted Reutzel, Aman Haque

Research output: Contribution to journalArticlepeer-review

Abstract

Structure-property-processing relationship has been studied in additively manufactured Ti–6Al–4V alloy. The processing was performed using in-situ electron microscope (EM) at a moderate current density of 5 × 105 A/cm2 applied for 5 min, and by suppressing Joule heating with massive heat sinks such that the temperature rise was <180 °C and the mechanical properties were not compromised. The results show that while the grain size increased by ~15%, the nanohardness increased by 16%. This is attributed to the pronounced dislocation generation, regeneration, and clustering as well as defect healing. Ultimately, there is a reduction in the residual strain and a significant increase in the intrinsic strength as evidenced by the high Taylor factor of the electric current processed specimen. This novel processing technique represents an alternative pathway for active controlling of microstructure and internal defects for parts that might be sensitive to high-temperature processing or conventional methods.

Original languageEnglish (US)
Article number140062
JournalMaterials Science and Engineering A
Volume798
DOIs
StatePublished - Nov 4 2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Electro-strengthening of the additively manufactured Ti–6Al–4V alloy'. Together they form a unique fingerprint.

Cite this