Electrode-confined catalyst systems for use in optical-to-chemical energy conversion

Karen A. Daube, D. Jed Harrison, Thomas E. Mallouk, Antonio J. Ricco, Shuchi Chao, Mark S. Wrighton, William A. Hendrickson, Arnold J. Drube

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Catalysis of multiple-electron transfer fuel-forming redox reactions at illuminated semiconductor-liquid electrolyte interfaces is important in achieving efficient optical energy conversion. The characterization of redox polymer-noble metal combinations as catalysts for the reduction of H2O and aqueous CO2 is described in this article. Emphasis is on the demonstration of rational synthetic methods applied to interfaces and the correlation of surface structure and function.

Original languageEnglish (US)
Pages (from-to)71-88
Number of pages18
JournalJournal of Photochemistry
Volume29
Issue number1-2
DOIs
StatePublished - Jan 1 1985

Fingerprint

Energy conversion
Electrodes
Catalysts
Redox reactions
Precious metals
Surface structure
Electrolytes
Catalysis
Polymers
Demonstrations
Semiconductor materials
Electrons
Liquids
Oxidation-Reduction

Cite this

Daube, K. A., Harrison, D. J., Mallouk, T. E., Ricco, A. J., Chao, S., Wrighton, M. S., ... Drube, A. J. (1985). Electrode-confined catalyst systems for use in optical-to-chemical energy conversion. Journal of Photochemistry, 29(1-2), 71-88. https://doi.org/10.1016/0047-2670(85)87062-3
Daube, Karen A. ; Harrison, D. Jed ; Mallouk, Thomas E. ; Ricco, Antonio J. ; Chao, Shuchi ; Wrighton, Mark S. ; Hendrickson, William A. ; Drube, Arnold J. / Electrode-confined catalyst systems for use in optical-to-chemical energy conversion. In: Journal of Photochemistry. 1985 ; Vol. 29, No. 1-2. pp. 71-88.
@article{f932cf50e068421d9ce7e7fa49e874e3,
title = "Electrode-confined catalyst systems for use in optical-to-chemical energy conversion",
abstract = "Catalysis of multiple-electron transfer fuel-forming redox reactions at illuminated semiconductor-liquid electrolyte interfaces is important in achieving efficient optical energy conversion. The characterization of redox polymer-noble metal combinations as catalysts for the reduction of H2O and aqueous CO2 is described in this article. Emphasis is on the demonstration of rational synthetic methods applied to interfaces and the correlation of surface structure and function.",
author = "Daube, {Karen A.} and Harrison, {D. Jed} and Mallouk, {Thomas E.} and Ricco, {Antonio J.} and Shuchi Chao and Wrighton, {Mark S.} and Hendrickson, {William A.} and Drube, {Arnold J.}",
year = "1985",
month = "1",
day = "1",
doi = "10.1016/0047-2670(85)87062-3",
language = "English (US)",
volume = "29",
pages = "71--88",
journal = "Journal of Photochemistry",
issn = "0047-2670",
publisher = "Elsevier Sequoia",
number = "1-2",

}

Daube, KA, Harrison, DJ, Mallouk, TE, Ricco, AJ, Chao, S, Wrighton, MS, Hendrickson, WA & Drube, AJ 1985, 'Electrode-confined catalyst systems for use in optical-to-chemical energy conversion', Journal of Photochemistry, vol. 29, no. 1-2, pp. 71-88. https://doi.org/10.1016/0047-2670(85)87062-3

Electrode-confined catalyst systems for use in optical-to-chemical energy conversion. / Daube, Karen A.; Harrison, D. Jed; Mallouk, Thomas E.; Ricco, Antonio J.; Chao, Shuchi; Wrighton, Mark S.; Hendrickson, William A.; Drube, Arnold J.

In: Journal of Photochemistry, Vol. 29, No. 1-2, 01.01.1985, p. 71-88.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Electrode-confined catalyst systems for use in optical-to-chemical energy conversion

AU - Daube, Karen A.

AU - Harrison, D. Jed

AU - Mallouk, Thomas E.

AU - Ricco, Antonio J.

AU - Chao, Shuchi

AU - Wrighton, Mark S.

AU - Hendrickson, William A.

AU - Drube, Arnold J.

PY - 1985/1/1

Y1 - 1985/1/1

N2 - Catalysis of multiple-electron transfer fuel-forming redox reactions at illuminated semiconductor-liquid electrolyte interfaces is important in achieving efficient optical energy conversion. The characterization of redox polymer-noble metal combinations as catalysts for the reduction of H2O and aqueous CO2 is described in this article. Emphasis is on the demonstration of rational synthetic methods applied to interfaces and the correlation of surface structure and function.

AB - Catalysis of multiple-electron transfer fuel-forming redox reactions at illuminated semiconductor-liquid electrolyte interfaces is important in achieving efficient optical energy conversion. The characterization of redox polymer-noble metal combinations as catalysts for the reduction of H2O and aqueous CO2 is described in this article. Emphasis is on the demonstration of rational synthetic methods applied to interfaces and the correlation of surface structure and function.

UR - http://www.scopus.com/inward/record.url?scp=0043186152&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0043186152&partnerID=8YFLogxK

U2 - 10.1016/0047-2670(85)87062-3

DO - 10.1016/0047-2670(85)87062-3

M3 - Article

AN - SCOPUS:0043186152

VL - 29

SP - 71

EP - 88

JO - Journal of Photochemistry

JF - Journal of Photochemistry

SN - 0047-2670

IS - 1-2

ER -

Daube KA, Harrison DJ, Mallouk TE, Ricco AJ, Chao S, Wrighton MS et al. Electrode-confined catalyst systems for use in optical-to-chemical energy conversion. Journal of Photochemistry. 1985 Jan 1;29(1-2):71-88. https://doi.org/10.1016/0047-2670(85)87062-3