Electron paramagnetic resonance investigations of lanthanide-doped barium titanate: Dopant site occupancy

Timothy D. Dunbar, William L. Warren, Bruce A. Tuttle, Clive A. Randall, Yoed Tsur

Research output: Contribution to journalArticlepeer-review

103 Scopus citations


Air-fired barium titanate samples doped with cerium, neodymium, samarium, gadolinium, dysprosium, erbium, or ytterbium were examined by electron paramagnetic resonance (EPR). Reducing atmosphere-fired europium-doped barium titanate was also investigated with EPR. Each dopant was studied in both Ba- and Ti-rich (Ba/Ti = 1.01, 0.99) samples. Point charge calculations were used to predict the EPR spectrum of each lanthanide in A- and B-sites. Different EPR spectra are expected for A- versus B-site substitution when Ce3+, Sm3+, Dy3+, and Yb3+ are the dopants. The experimentally observed Ba/Ti doping behavior of Ce3+ in BaTiO3 suggests that as a 3+ cation it is on the A-site. No EPR active signal was observed for Sm3+ in BaTiO3. Eu2+ and Gd3+, as previously discussed in the literature, were found to be an A-site dopant and amphoteric, respectively. Dy3+ was found to be a B-site dopant with an EPR signal intensity suggesting amphoteric behavior, whereas Yb3+ showed only B-site occupancy. Nd3+ and Er3+ could not easily be assigned to a particular site by EPR methods alone. We also discuss the lanthanide dopant's effect on the observed levels of titanium vacancies, barium vacancies, and Mn2+ impurities.

Original languageEnglish (US)
Pages (from-to)908-917
Number of pages10
JournalJournal of Physical Chemistry B
Issue number3
StatePublished - Jan 22 2004

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Electron paramagnetic resonance investigations of lanthanide-doped barium titanate: Dopant site occupancy'. Together they form a unique fingerprint.

Cite this