Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications: Part 2: Wake flow field measurements and visualization using particle image velocimetry

Oǧuz Uzol, Cengiz Camci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

Extensive wake flow field measurements and visualizations are conducted using particle image velocimetry (PIV) inside the wakes of the elliptical and circular pin fin arrays in order to better understand the flow physics and the loss mechanisms of these devices. The true-mean velocity field inside the wake two diameters downstream of the pin fin arrays is obtained by collecting and ensemble averaging a large number of PIV samples in the midplane of the test section. Additional experiments are also conducted inside the very near wake of the pin fins in order to visualize instantaneous flow field features. The results of the study reveal that the circular pin fin array creates a large low momentum wake region when compared to the elliptical pin fin arrays. It is observed from the flow visualization inside the wake that this kind of a very large momentum deficit is created due to the early separation of the flow from the circular fins in the second row. In the case of elliptical fins, however, the flow stays attached to the fin surface and the separation occurs very close to the downstream stagnation point on the surface which in turn results in a very small low momentum wake region behind the elliptical pin fin arrays. The mean turbulent kinetic energy levels from the PIV measurements show very high turbulence levels in the wake of the circular fin arrays compared to the elliptical fins. However, the smaller momentum deficit inside the elliptical pin fin wakes results in higher local Reynolds numbers inside the wake when compared to the circular pin fin wakes. This in turn helps to keep the endwall heat transfer enhancement levels close to the circular fin arrays although the turbulence levels are much lower in this region.

Original languageEnglish (US)
Title of host publicationHeat Transfer; Electric Power; Industrial and Cogeneration
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791878521
DOIs
StatePublished - 2001
EventASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001 - New Orleans, LA, United States
Duration: Jun 4 2001Jun 7 2001

Publication series

NameProceedings of the ASME Turbo Expo
Volume3

Other

OtherASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Country/TerritoryUnited States
CityNew Orleans, LA
Period6/4/016/7/01

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications: Part 2: Wake flow field measurements and visualization using particle image velocimetry'. Together they form a unique fingerprint.

Cite this