Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We prove an analogue of the Tate conjecture on homomorphisms of Abelian varieties over infinite cyclotomic extensions of finitely generated fields of characteristic zero.

Original languageEnglish (US)
Pages (from-to)1801-1810
Number of pages10
JournalSbornik Mathematics
Volume201
Issue number12
DOIs
StatePublished - 2010

Fingerprint

Cyclotomic
Abelian Variety
Endomorphisms
Homomorphisms
Finitely Generated
Lie Algebra
Analogue
Zero

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

@article{e38ed26f4cc547fd951594e804c03155,
title = "Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras",
abstract = "We prove an analogue of the Tate conjecture on homomorphisms of Abelian varieties over infinite cyclotomic extensions of finitely generated fields of characteristic zero.",
author = "Zarhin, {Yu G.}",
year = "2010",
doi = "10.1070/SM2010v201n12ABEH004132",
language = "English (US)",
volume = "201",
pages = "1801--1810",
journal = "Sbornik Mathematics",
issn = "1064-5616",
publisher = "Turpion Ltd.",
number = "12",

}

Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras. / Zarhin, Yu G.

In: Sbornik Mathematics, Vol. 201, No. 12, 2010, p. 1801-1810.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras

AU - Zarhin, Yu G.

PY - 2010

Y1 - 2010

N2 - We prove an analogue of the Tate conjecture on homomorphisms of Abelian varieties over infinite cyclotomic extensions of finitely generated fields of characteristic zero.

AB - We prove an analogue of the Tate conjecture on homomorphisms of Abelian varieties over infinite cyclotomic extensions of finitely generated fields of characteristic zero.

UR - http://www.scopus.com/inward/record.url?scp=79955629410&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955629410&partnerID=8YFLogxK

U2 - 10.1070/SM2010v201n12ABEH004132

DO - 10.1070/SM2010v201n12ABEH004132

M3 - Article

AN - SCOPUS:79955629410

VL - 201

SP - 1801

EP - 1810

JO - Sbornik Mathematics

JF - Sbornik Mathematics

SN - 1064-5616

IS - 12

ER -