Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle

Charles H. Lang, Robert A. Frost

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E·4E-BP1 complex to the active eIF4E·eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation intiation and protein synthesis.

Original languageEnglish (US)
Pages (from-to)144-155
Number of pages12
JournalJournal of Cellular Physiology
Volume203
Issue number1
DOIs
StatePublished - Apr 1 2005

Fingerprint

Phosphorylation
Endotoxins
Leucine
Lipopolysaccharides
Muscle
Skeletal Muscle
S 6
Rats
Insulin-Like Growth Factor I
Plasmas
Amino Acids
Ribosomal Protein S6
Eukaryotic Initiation Factor-4E
Rat control
Anabolic Agents
Muscles
Muscle Proteins
Glucocorticoid Receptors
Protein Biosynthesis
Glucocorticoids

All Science Journal Classification (ASJC) codes

  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{3c7314b9d62843a7aedc6f202f6e50f8,
title = "Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle",
abstract = "Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E·4E-BP1 complex to the active eIF4E·eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation intiation and protein synthesis.",
author = "Lang, {Charles H.} and Frost, {Robert A.}",
year = "2005",
month = "4",
day = "1",
doi = "10.1002/jcp.20207",
language = "English (US)",
volume = "203",
pages = "144--155",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "1",

}

Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle. / Lang, Charles H.; Frost, Robert A.

In: Journal of Cellular Physiology, Vol. 203, No. 1, 01.04.2005, p. 144-155.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle

AU - Lang, Charles H.

AU - Frost, Robert A.

PY - 2005/4/1

Y1 - 2005/4/1

N2 - Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E·4E-BP1 complex to the active eIF4E·eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation intiation and protein synthesis.

AB - Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E·4E-BP1 complex to the active eIF4E·eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation intiation and protein synthesis.

UR - http://www.scopus.com/inward/record.url?scp=14744267948&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=14744267948&partnerID=8YFLogxK

U2 - 10.1002/jcp.20207

DO - 10.1002/jcp.20207

M3 - Article

C2 - 15389631

AN - SCOPUS:14744267948

VL - 203

SP - 144

EP - 155

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 1

ER -