Energy allocation for tailored waveform design using the Taguchi method for clutter suppression and enhanced detection of targets

Zacharie Idriss, Ram M. Narayanan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The energy allocation of a transmit waveform ultimately dictates the effectiveness by which it extracts a target in a cluttered environment. The quantification of information present in the radar cross section offers notable advantages as a fitness function for the design of efficiently energy distributed waveforms for target identification. A robust method of suppression of both the temporal and spectral characteristics for target attenuating radar returns (clutter) is developed in this paper. By means of a priori knowledge of a target spectral response, a method of clutter mitigation for target identification using ultra-wide band (UWB) radar is developed. The robust design method takes after the Taguchi Method after and has seen growing use in biotechnology, statistics, and engineering as a method for both design and analysis. The Taguchi algorithm (TA) is created, based on an orthogonal matrix level design, in conjunction with the mutual information (MI) used as a criterion for convergence. This method efficiently allocates available resources within bins in which target spectral characteristics dominate those of which are undesired. As cognitive UWB radars constantly received clutter echoes and experience external noise sources, the mutual information is calculated adaptively during optimization between a transmit waveform given knowledge of the target, and the received waveform.

Original languageEnglish (US)
Title of host publicationRadar Sensor Technology XXII
EditorsArmin Doerry, Kenneth I. Ranney
PublisherSPIE
ISBN (Electronic)9781510617773
DOIs
StatePublished - Jan 1 2018
EventRadar Sensor Technology XXII 2018 - Orlando, United States
Duration: Apr 16 2018Apr 18 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10633
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherRadar Sensor Technology XXII 2018
CountryUnited States
CityOrlando
Period4/16/184/18/18

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Energy allocation for tailored waveform design using the Taguchi method for clutter suppression and enhanced detection of targets'. Together they form a unique fingerprint.

Cite this