Enhanced organic removal for shale gas fracturing flowback water by electrocoagulation and simultaneous electro-peroxone process

Fan xin Kong, Xiao feng Lin, Guang dong Sun, Jin fu Chen, Chun mei Guo, Yuefeng F. Xie

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Colloids and organics in shale gas fracturing flowback water (SGFFW) during shale gas extraction are of primary concerns. Coagulation combined with oxidation might be a promising process for SGFFW treatment. In this study, a novel electrocoagulation-peroxone (ECP) process was developed for SGFFW treatment by simultaneous coagulation and oxidation process with a Al plate as the anode and a carbon-PTFE gas diffusion electrode as the cathode, realizing the simultaneous processes of coagulation, H2O2 generation and activation by O3 at the cathode. Compared with electrocoagulation (EC) and peroxi-electrocoagulation (PEC), COD removal efficiency mainly followed the declining order of ECP, PEC and EC under the optimal current density of 50 mA cm−2. The appearance of medium MW fraction (1919 Da) during ozonation and PEC but disappearance in ECP indicated that these intermediate products couldn't be degraded by ozonation and PEC but could be further oxidized and mineralized by the hydroxyl radical produced by the cathode in ECP, demonstrating the hydroxyl radical might be responsible for the significant enhancement of COD removal. The pseudo-first order kinetic model can well fit ozonation and EC process but not the PEC and ECP process due to the synthetic effect of coagulation and oxidation. However, the proposed mechanism based model can generally fit ECP satisfactorily. The average current efficiency for PEC was 35.4% and 12% higher than that of ozonation and EC, respectively. This study demonstrated the feasibility of establishing a high efficiency and space-saving electrochemical system with integrated anodic coagulation and cathodic electro-peroxone for SGFFW treatment.

Original languageEnglish (US)
Pages (from-to)252-258
Number of pages7
JournalChemosphere
Volume218
DOIs
StatePublished - Mar 2019

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Enhanced organic removal for shale gas fracturing flowback water by electrocoagulation and simultaneous electro-peroxone process'. Together they form a unique fingerprint.

  • Cite this