Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

Noura A. Shehab, Gary L. Amy, Bruce E. Logan, Pascal E. Saikaly

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations.

Original languageEnglish (US)
Pages (from-to)364-370
Number of pages7
JournalJournal of Membrane Science
Volume469
DOIs
StatePublished - Nov 1 2014

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Fingerprint Dive into the research topics of 'Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)'. Together they form a unique fingerprint.

  • Cite this