Enhancement of volcanism and geothermal heat flux by ice-age cycling: A stress modeling study of Greenland

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.

Original languageEnglish (US)
Pages (from-to)1456-1471
Number of pages16
JournalJournal of Geophysical Research: Earth Surface
Volume121
Issue number8
DOIs
StatePublished - Aug 1 2016

Fingerprint

volcanic activity
Greenland
Ice
heat flux
ice sheet
Heat flux
volcanism
ice
Pleistocene
heat
cycles
augmentation
melt
modeling
magma
lithosphere
emplacement
ice stream
cyclic loading
asthenosphere

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

@article{96aa068d5f6043c4b9092d0f6892df13,
title = "Enhancement of volcanism and geothermal heat flux by ice-age cycling: A stress modeling study of Greenland",
abstract = "Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.",
author = "Stevens, {Nathan T.} and Parizek, {Byron R.} and Alley, {Richard B.}",
year = "2016",
month = "8",
day = "1",
doi = "10.1002/2016JF003855",
language = "English (US)",
volume = "121",
pages = "1456--1471",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
number = "8",

}

TY - JOUR

T1 - Enhancement of volcanism and geothermal heat flux by ice-age cycling

T2 - A stress modeling study of Greenland

AU - Stevens, Nathan T.

AU - Parizek, Byron R.

AU - Alley, Richard B.

PY - 2016/8/1

Y1 - 2016/8/1

N2 - Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.

AB - Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.

UR - http://www.scopus.com/inward/record.url?scp=84983390168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84983390168&partnerID=8YFLogxK

U2 - 10.1002/2016JF003855

DO - 10.1002/2016JF003855

M3 - Article

AN - SCOPUS:84983390168

VL - 121

SP - 1456

EP - 1471

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 8

ER -