Enhancing privacy in wearable IoT through a provenance architecture

Richard K. Lomotey, Kenneth Sofranko, Rita Orji

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The Internet of Things (IoT) is inspired by network interconnectedness of humans, objects, and cloud services to facilitate new use cases and new business models across multiple enterprise domains including healthcare. This creates the need for continuous data streaming in IoT architectures which are mainly designed following the broadcast model. The model facilitates IoT devices to sense and deliver information to other nodes (e.g., cloud, physical objects, etc.) that are interested in the information. However, this is a recipe for privacy breaches since sensitive data, such as personal vitals from wearables, can be delivered to undesired sniffing nodes. In order to protect users’ privacy and manufacturers’ IP, as well as detecting and blocking malicious activity, this research paper proposes privacy-oriented IoT architecture following the provenance technique. This ensures that the IoT data will only be delivered to the nodes that subscribe to receive the information. Using the provenance technique to ensure high transparency, the work is able to provide trace routes for digital audit trail. Several empirical evaluations are conducted in a real-world wearable IoT ecosystem to prove the superiority of the proposed work.

Original languageEnglish (US)
Article number18
JournalMultimodal Technologies and Interaction
Volume2
Issue number2
DOIs
StatePublished - Jun 2018

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Human-Computer Interaction
  • Neuroscience (miscellaneous)

Fingerprint Dive into the research topics of 'Enhancing privacy in wearable IoT through a provenance architecture'. Together they form a unique fingerprint.

Cite this