Abstract
Using Monte Carlo simulations of a touching-bead model of double-stranded DNA, we show that DNA extension is enhanced in isosceles triangular nanochannels (relative to a circular nanochannel of the same effective size) due to entropic depletion in the channel corners. The extent of the enhanced extension depends non-monotonically on both the accessible area of the nanochannel and the apex angle of the triangle. We also develop a metric to quantify the extent of entropic depletion, thereby collapsing the extension data for circular, square, and various triangular nanochannels onto a single master curve for channel sizes in the transition between the Odijk and de Gennes regimes.
Original language | English (US) |
---|---|
Article number | 024102 |
Journal | Biomicrofluidics |
Volume | 7 |
Issue number | 2 |
DOIs | |
State | Published - Apr 5 2013 |
All Science Journal Classification (ASJC) codes
- Biomedical Engineering
- Materials Science(all)
- Condensed Matter Physics
- Fluid Flow and Transfer Processes
- Colloid and Surface Chemistry