Abstract
We report epitaxial growth of TiN films having low resistivity on (100) silicon substrates using pulsed laser deposition method. The TiN films were characterized using x-ray diffraction, Rutherford backscattering, four-point-probe ac resistivity, high resolution transmission electron microscopy and scanning electron microscopy techniques and epitaxial relationship was found to be 〈100〉 TiN ∥ 〈100〉 Si. TiN films showed 10%-20% channeling yield. In the plane, four unit cells of TiN match with three unit cells of silicon with less than 4.0% misfit. This domain matching epitaxy provides a new mechanism of epitaxial growth in systems with large lattice misfits. Four-point-probe measurements show characteristic metallic behavior of these films as a function of temperature with a typical resistivity of about 15 μΩ cm at room temperature. Implications of low-resistivity epitaxial TiN in silicon device fabrication are discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 1290-1292 |
Number of pages | 3 |
Journal | Applied Physics Letters |
Volume | 61 |
Issue number | 11 |
DOIs | |
State | Published - 1992 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)