Equipartition doppler factors for a sample of active galactic nuclei

Alberto Güuosa, Ruth Daly

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The Doppler factor of the outflow from compact radio cores of active galactic nuclei (AGNs) can be estimated from single-epoch radio observations by assuming that the particles and magnetic field are in equipartition, as suggested by Readhead. This estimate of the Doppler factor is called the equipartition Doppler factor, δeq. To test whether δeq is a good estimator of the true Doppler factor, equipartition Doppler factors are computed for a sample of 105 radio sources and compared with the corresponding inverse Compton (self-Compton) Doppler factors, δIC, computed for this same sample by Ghisellini and coworkers, by assuming the observed X-ray flux to be of inverse Compton origin. The Ghisellini et al. sample consists of 33 BL Lacertae objects, 24 core-dominated high-polarization quasars, 29 core-dominated low-polarization quasars (including seven core-dominated quasars with no polarization data), 11 lobe-dominated quasars, and eight radio galaxies. The relevant assumptions for the computation of both the equipartition Doppler factor, δeq, and the inverse Compton Doppler factor, δIC, are discussed. A high correlation is found between these two estimates of the true Doppler factor, suggesting that they are both reliable. In fact, it appears that δeqIC is on the order of unity. This seems to indicate that the sources are near equipartition, and thus confirms the possibility of using δeq to estimate the true Doppler factor of a source from single-epoch radio data. It appears that the Doppler factors of radio galaxies and lobe-dominated quasars are lower than those of the other categories of sources. This may be related to orientation effects, and could therefore be used to constrain orientation unified models. In any case, equipartition Doppler factors are likely to play a crucial role in our understanding of the physics at work in compact radio sources.

Original languageEnglish (US)
Pages (from-to)600-608
Number of pages9
JournalAstrophysical Journal
Volume461
Issue number2 PART I
StatePublished - Jan 1 1996

Fingerprint

active galactic nuclei
radio
quasars
polarization
radio galaxies
lobes
estimates
time measurement
outflow
physics
BL Lacertae objects
radio observation
magnetic field
estimators
unity

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Güuosa, Alberto ; Daly, Ruth. / Equipartition doppler factors for a sample of active galactic nuclei. In: Astrophysical Journal. 1996 ; Vol. 461, No. 2 PART I. pp. 600-608.
@article{d8d92fde5b254170b75518d9334023ca,
title = "Equipartition doppler factors for a sample of active galactic nuclei",
abstract = "The Doppler factor of the outflow from compact radio cores of active galactic nuclei (AGNs) can be estimated from single-epoch radio observations by assuming that the particles and magnetic field are in equipartition, as suggested by Readhead. This estimate of the Doppler factor is called the equipartition Doppler factor, δeq. To test whether δeq is a good estimator of the true Doppler factor, equipartition Doppler factors are computed for a sample of 105 radio sources and compared with the corresponding inverse Compton (self-Compton) Doppler factors, δIC, computed for this same sample by Ghisellini and coworkers, by assuming the observed X-ray flux to be of inverse Compton origin. The Ghisellini et al. sample consists of 33 BL Lacertae objects, 24 core-dominated high-polarization quasars, 29 core-dominated low-polarization quasars (including seven core-dominated quasars with no polarization data), 11 lobe-dominated quasars, and eight radio galaxies. The relevant assumptions for the computation of both the equipartition Doppler factor, δeq, and the inverse Compton Doppler factor, δIC, are discussed. A high correlation is found between these two estimates of the true Doppler factor, suggesting that they are both reliable. In fact, it appears that δeq/δIC is on the order of unity. This seems to indicate that the sources are near equipartition, and thus confirms the possibility of using δeq to estimate the true Doppler factor of a source from single-epoch radio data. It appears that the Doppler factors of radio galaxies and lobe-dominated quasars are lower than those of the other categories of sources. This may be related to orientation effects, and could therefore be used to constrain orientation unified models. In any case, equipartition Doppler factors are likely to play a crucial role in our understanding of the physics at work in compact radio sources.",
author = "Alberto G{\"u}uosa and Ruth Daly",
year = "1996",
month = "1",
day = "1",
language = "English (US)",
volume = "461",
pages = "600--608",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "2 PART I",

}

Equipartition doppler factors for a sample of active galactic nuclei. / Güuosa, Alberto; Daly, Ruth.

In: Astrophysical Journal, Vol. 461, No. 2 PART I, 01.01.1996, p. 600-608.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Equipartition doppler factors for a sample of active galactic nuclei

AU - Güuosa, Alberto

AU - Daly, Ruth

PY - 1996/1/1

Y1 - 1996/1/1

N2 - The Doppler factor of the outflow from compact radio cores of active galactic nuclei (AGNs) can be estimated from single-epoch radio observations by assuming that the particles and magnetic field are in equipartition, as suggested by Readhead. This estimate of the Doppler factor is called the equipartition Doppler factor, δeq. To test whether δeq is a good estimator of the true Doppler factor, equipartition Doppler factors are computed for a sample of 105 radio sources and compared with the corresponding inverse Compton (self-Compton) Doppler factors, δIC, computed for this same sample by Ghisellini and coworkers, by assuming the observed X-ray flux to be of inverse Compton origin. The Ghisellini et al. sample consists of 33 BL Lacertae objects, 24 core-dominated high-polarization quasars, 29 core-dominated low-polarization quasars (including seven core-dominated quasars with no polarization data), 11 lobe-dominated quasars, and eight radio galaxies. The relevant assumptions for the computation of both the equipartition Doppler factor, δeq, and the inverse Compton Doppler factor, δIC, are discussed. A high correlation is found between these two estimates of the true Doppler factor, suggesting that they are both reliable. In fact, it appears that δeq/δIC is on the order of unity. This seems to indicate that the sources are near equipartition, and thus confirms the possibility of using δeq to estimate the true Doppler factor of a source from single-epoch radio data. It appears that the Doppler factors of radio galaxies and lobe-dominated quasars are lower than those of the other categories of sources. This may be related to orientation effects, and could therefore be used to constrain orientation unified models. In any case, equipartition Doppler factors are likely to play a crucial role in our understanding of the physics at work in compact radio sources.

AB - The Doppler factor of the outflow from compact radio cores of active galactic nuclei (AGNs) can be estimated from single-epoch radio observations by assuming that the particles and magnetic field are in equipartition, as suggested by Readhead. This estimate of the Doppler factor is called the equipartition Doppler factor, δeq. To test whether δeq is a good estimator of the true Doppler factor, equipartition Doppler factors are computed for a sample of 105 radio sources and compared with the corresponding inverse Compton (self-Compton) Doppler factors, δIC, computed for this same sample by Ghisellini and coworkers, by assuming the observed X-ray flux to be of inverse Compton origin. The Ghisellini et al. sample consists of 33 BL Lacertae objects, 24 core-dominated high-polarization quasars, 29 core-dominated low-polarization quasars (including seven core-dominated quasars with no polarization data), 11 lobe-dominated quasars, and eight radio galaxies. The relevant assumptions for the computation of both the equipartition Doppler factor, δeq, and the inverse Compton Doppler factor, δIC, are discussed. A high correlation is found between these two estimates of the true Doppler factor, suggesting that they are both reliable. In fact, it appears that δeq/δIC is on the order of unity. This seems to indicate that the sources are near equipartition, and thus confirms the possibility of using δeq to estimate the true Doppler factor of a source from single-epoch radio data. It appears that the Doppler factors of radio galaxies and lobe-dominated quasars are lower than those of the other categories of sources. This may be related to orientation effects, and could therefore be used to constrain orientation unified models. In any case, equipartition Doppler factors are likely to play a crucial role in our understanding of the physics at work in compact radio sources.

UR - http://www.scopus.com/inward/record.url?scp=33645129295&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645129295&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:33645129295

VL - 461

SP - 600

EP - 608

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2 PART I

ER -