Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids

Yang Liu, Ran Zhao, Mehdi Ghaffari, Junhong Lin, Sheng Liu, Hülya Cebeci, Roberto Guzmán De Villoria, Reza Montazami, Dong Wang, Brian L. Wardle, James R. Heflin, Q. M. Zhang

    Research output: Contribution to journalArticlepeer-review

    30 Scopus citations

    Abstract

    In this study, we demonstrate electrical equivalent circuits that model the complex frequency-dependent impedance of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) containing electro-active polymer membranes and ionic polymer conductor network composite (IPCNC) devices. The devices include Nafion membrane actuators, Nafion coated with layer-by-layer (LbL) Au nanoparticle/poly(allylamine hydrochloride) (PAH) composite actuators, and Nafion with vertically aligned carbon nanotube (VA-CNT)/Nafion composite actuators. It is found that the low frequency responses of these devices indicate Warburg diffusion. Therefore, Warburg impedance is utilized to model the low frequency diffusion behavior of the devices, while the electric double layer capacitance (C dl) represents the storage of drifting ions under electric field at high frequencies. It is found that C dl for Nafion with 40 wt% EMI-Tf is 7.5 μF/cm 2 and increases to 11.4 μF/cm 2 with increasing surface area of the LbL composite electrode. C dl increases further to above 3 × 10 3 μF/cm 2 for an actuator with 12 μm VA-CNT/Nafion composite electrodes, while the Warburg coefficient A W remains nearly the same for all the devices. As a result, the actuation magnitude and speed increase with charges accumulated due to higher C dl, without much increase in the contribution from the slow ion diffusion process.

    Original languageEnglish (US)
    Pages (from-to)70-76
    Number of pages7
    JournalSensors and Actuators, A: Physical
    Volume181
    DOIs
    StatePublished - Jul 2012

    All Science Journal Classification (ASJC) codes

    • Electronic, Optical and Magnetic Materials
    • Instrumentation
    • Condensed Matter Physics
    • Surfaces, Coatings and Films
    • Metals and Alloys
    • Electrical and Electronic Engineering

    Fingerprint Dive into the research topics of 'Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids'. Together they form a unique fingerprint.

    Cite this