Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements

Alex Guenther, Patrick Zimmerman, Lee Klinger, Jim Greenberg, Chris Ennis, Kenneth Davis, Walt Pollock, Hal Westberg, Gene Allwine, Chris Geron

Research output: Contribution to journalArticle

118 Scopus citations

Abstract

Natural volatile organic compound (VOC) emissions were investigated at two forested sites in the southeastern United States. A variety of VOC compounds including methanol, 2-methyl-3-buten-2-ol, 6-methyl-5-hepten-2-one, isoprene and 15 monoterpenes were emitted from vegetation at these sites. Diurnal variations in VOC emissions were observed and related to light and temperature. Variations in isoprene emission from individual branches are well correlated with light intensity and leaf temperature while variations in monoterpene emissions can be explained by variations in leaf temperature alone. Isoprene emission rates for individual leaves tend to be about 75% higher than branch average emission rates due to shading on the lower leaves of a branch. Average daytime mixing ratios of 13.8 and 6.6 ppbv C isoprene and 5.0 and 4.5 ppbv C monoterpenes were observed at heights between 40 m and 1 km above ground level the two sites. Isoprene and monoterpenes account for 30% to 40% of the total carbon in the ambient non-methane VOC quantified in the mixed layer at these sites and over 90% of the VOC reactivity with OH. Ambient mixing ratios were used to estimate isoprene and monoterpene fluxes by applying box model and mixed-layer gradient techniques. Although the two techniques estimate fluxes averaged over different spatial scales, the average fluxes calculated by the two techniques agree within a factor of two. The ambient mixing ratios were used to evaluate a biogenic VOC emission model that uses field measurements of plant species composition, remotely sensed vegetation distributions, leaf level emission potentials determined from vegetation enclosures, and light and temperature dependent emission activity factors. Emissions estimated for a temperature of 30°C and above canopy photosynthetically active radiation flux of 1000 μmol m-2 s-1 are around 4 mg C m-2 h-1 of isoprene and 0.7 mg C m-2 h-1 of monoterpenes at the ROSE site in western Alabama and 3 mg C m-2 h-1 of isoprene and 0.5 mg C m-2 h-1 of monoterpenes at the SOS-M site in eastern Georgia. Isoprene and monoterpene emissions based on land characteristics data and emission enclosure measurements are within a factor of two of estimates based on ambient measurements in most cases. This represents reasonable agreement due to the large uncertainties associated with these models and because the observed differences are at least partially due to differences in the size and location of the source region ("flux footprint") associated with each flux estimate.

Original languageEnglish (US)
Pages (from-to)1345-1359
Number of pages15
JournalJournal of Geophysical Research: Atmospheres
Volume101
Issue numberD1
DOIs
StatePublished - Jan 1 1996

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

Guenther, A., Zimmerman, P., Klinger, L., Greenberg, J., Ennis, C., Davis, K., Pollock, W., Westberg, H., Allwine, G., & Geron, C. (1996). Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. Journal of Geophysical Research: Atmospheres, 101(D1), 1345-1359. https://doi.org/10.1029/95JD03006