Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer

Mark Parrington, D. B.A. Jones, K. W. Bowman, L. W. Horowitz, A. M. Thompson, D. W. Tarasick, J. C. Witte

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

We assimilate ozone and CO retrievals from the Tropospheric Emission Spectrometer (TES) for July and August 2006 into the GEOS-Chem and AM2-Chem models. We show that the spatiotemporal sampling of the TES measurements is sufficient to constrain the tropospheric ozone distribution in the models despite their different chemical and transport mechanisms. Assimilation of TES data reduces the mean differences in ozone between the models from almost 8 ppbv to 1.5 ppbv. Differences between the mean model profiles and ozonesonde data over North America are reduced from almost 30% to within 5% for GEOS-Chem, and from 40% to within 10% for AM2-Chem, below 200 hPa. The absolute biases are larger in the upper troposphere and lower stratosphere (UT/ LS), increasing to 10% and 30% in GEOS-Chem and AM2-Chem, respectively, at 200 hPa. The larger bias in the UT/LS reflects the influence of the spatial sampling of TES, the vertical smoothing of the TES retrievals, and the coarse vertical resolution of the models. The largest discrepancy in ozone between the models is associated with the ozone maximum over the southeastern USA. The assimilation reduces the mean bias between the models from 26 to 16 ppbv in this region. In GEOS-Chem, there is an increase of about 11 ppbv in the upper troposphere, consistent with the increase in ozone obtained by a previous study using GEOS-Chem with an improved estimate of lightning NOx emissions over the USA. Our results show that assimilation of TES observations into models of tropospheric chemistry and transport provides an improved description of free tropospheric ozone.

Original languageEnglish (US)
Article numberD18307
JournalJournal of Geophysical Research Atmospheres
Volume113
Issue number18
DOIs
StatePublished - Sep 27 2008

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer'. Together they form a unique fingerprint.

Cite this