Ethyl pyruvate preserves IGF-I sensitivity toward mTOR substrates and protein synthesis in C2C12 myotubes

Robert A. Frost, Erika Pereyra, Charles H. Lang

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Bacterial infection decreases skeletal muscle protein synthesis via inhibition of the mammalian target of rapamycin (mTOR), a key regulator of translation initiation. To better define the mechanism by which muscle mTOR activity is decreased, we used an in vitro model of C2C12 myotubes treated with endotoxin [lipopolysaccharide (LPS)]and interferon (IFN)-γ to determine whether stable lipophilic pyruvate derivatives restore mTOR signaling. Myotubes treated with a combination of LPS and IFNγ down-regulated the phosphorylation of the mTOR substrates S6 kinase-1 and 4E binding protein-1. The phosphorylation of ribosomal protein S6 was decreased, whereas phosphorylation of elongation factor-2 was enhanced; all results consistent with defects in both translation initiation and elongation. LPS/IFNγ decreased protein synthesis 60% in myotubes. Treatment with methyl or ethyl pyruvate partially protected against the LPS/IFNγ-induced fall in mTOR signaling. The protective effect of ethyl and methyl pyruvate could not be replicated by an equimolar amount of sodium pyruvate. Although LPS/IFNγ treated myotubes were initially IGF-I responsive, prolonged exposure (≥17 h) resulted in IGF-I resistance at the level of mTOR despite normal IGF-I receptor phosphorylation. Ethyl pyruvate treatment restored IGF-I sensitivity as evidenced by the left shift in the IGF-I dose-response curve and maintained IGF-I responsiveness for a prolonged period of time. Ethyl pyruvate also restored IGF-I-stimulated protein synthesis in LPS/IFNγ-treated myotubes. Cotreatment withN-acetyl cysteine or ascorbic acid also preserved IGF-I sensitivity andmTOR activity. The data suggest that the combination of LPS and IFNγ inhibits mTOR activity and that prolonged exposure induces IGF-I resistance in myotubes. Lipophilic pyruvate derivatives and antioxidants show promise at rescuing mTOR activity and muscle protein synthesis by maintaining IGF-I sensitivity in this model.

Original languageEnglish (US)
Pages (from-to)151-163
Number of pages13
Issue number1
StatePublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Endocrinology


Dive into the research topics of 'Ethyl pyruvate preserves IGF-I sensitivity toward mTOR substrates and protein synthesis in C2C12 myotubes'. Together they form a unique fingerprint.

Cite this