Evaluating global ocean carbon models: The importance of realistic physics

S. C. Doney, K. Lindsay, K. Caldeira, J. M. Campin, H. Drange, J. C. Dutay, M. Follows, Y. Gao, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, G. Madec, E. Maier-Reimer, J. C. Marshall, R. J. Matear, P. Monfray, A. Mouchet, R. Najjar, J. C. OrrG. K. Plattner, J. Sarmiento, R. Schlitzer, R. Slater, I. J. Totterdell, M. F. Weirig, Y. Yamanaka, A. Yool

Research output: Contribution to journalArticle

142 Citations (Scopus)

Abstract

A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25-40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.

Original languageEnglish (US)
Pages (from-to)GB3017 1-22
JournalGlobal Biogeochemical Cycles
Volume18
Issue number3
DOIs
StatePublished - Sep 1 2004

Fingerprint

global ocean
physics
Carbon
Physics
carbon
ocean
carbon cycle
Chlorofluorocarbons
sea surface salinity
CFC
Parameterization
Climate change
mixed layer
parameterization
sea surface temperature
tracer
Fluxes

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Environmental Chemistry
  • Environmental Science(all)
  • Atmospheric Science

Cite this

Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay, J. C., ... Yool, A. (2004). Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochemical Cycles, 18(3), GB3017 1-22. https://doi.org/10.1029/2003GB002150
Doney, S. C. ; Lindsay, K. ; Caldeira, K. ; Campin, J. M. ; Drange, H. ; Dutay, J. C. ; Follows, M. ; Gao, Y. ; Gnanadesikan, A. ; Gruber, N. ; Ishida, A. ; Joos, F. ; Madec, G. ; Maier-Reimer, E. ; Marshall, J. C. ; Matear, R. J. ; Monfray, P. ; Mouchet, A. ; Najjar, R. ; Orr, J. C. ; Plattner, G. K. ; Sarmiento, J. ; Schlitzer, R. ; Slater, R. ; Totterdell, I. J. ; Weirig, M. F. ; Yamanaka, Y. ; Yool, A. / Evaluating global ocean carbon models : The importance of realistic physics. In: Global Biogeochemical Cycles. 2004 ; Vol. 18, No. 3. pp. GB3017 1-22.
@article{7352c7813aee481b9b9dbdc0ea072a43,
title = "Evaluating global ocean carbon models: The importance of realistic physics",
abstract = "A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25-40{\%}) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.",
author = "Doney, {S. C.} and K. Lindsay and K. Caldeira and Campin, {J. M.} and H. Drange and Dutay, {J. C.} and M. Follows and Y. Gao and A. Gnanadesikan and N. Gruber and A. Ishida and F. Joos and G. Madec and E. Maier-Reimer and Marshall, {J. C.} and Matear, {R. J.} and P. Monfray and A. Mouchet and R. Najjar and Orr, {J. C.} and Plattner, {G. K.} and J. Sarmiento and R. Schlitzer and R. Slater and Totterdell, {I. J.} and Weirig, {M. F.} and Y. Yamanaka and A. Yool",
year = "2004",
month = "9",
day = "1",
doi = "10.1029/2003GB002150",
language = "English (US)",
volume = "18",
pages = "GB3017 1--22",
journal = "Global Biogeochemical Cycles",
issn = "0886-6236",
publisher = "American Geophysical Union",
number = "3",

}

Doney, SC, Lindsay, K, Caldeira, K, Campin, JM, Drange, H, Dutay, JC, Follows, M, Gao, Y, Gnanadesikan, A, Gruber, N, Ishida, A, Joos, F, Madec, G, Maier-Reimer, E, Marshall, JC, Matear, RJ, Monfray, P, Mouchet, A, Najjar, R, Orr, JC, Plattner, GK, Sarmiento, J, Schlitzer, R, Slater, R, Totterdell, IJ, Weirig, MF, Yamanaka, Y & Yool, A 2004, 'Evaluating global ocean carbon models: The importance of realistic physics', Global Biogeochemical Cycles, vol. 18, no. 3, pp. GB3017 1-22. https://doi.org/10.1029/2003GB002150

Evaluating global ocean carbon models : The importance of realistic physics. / Doney, S. C.; Lindsay, K.; Caldeira, K.; Campin, J. M.; Drange, H.; Dutay, J. C.; Follows, M.; Gao, Y.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; Madec, G.; Maier-Reimer, E.; Marshall, J. C.; Matear, R. J.; Monfray, P.; Mouchet, A.; Najjar, R.; Orr, J. C.; Plattner, G. K.; Sarmiento, J.; Schlitzer, R.; Slater, R.; Totterdell, I. J.; Weirig, M. F.; Yamanaka, Y.; Yool, A.

In: Global Biogeochemical Cycles, Vol. 18, No. 3, 01.09.2004, p. GB3017 1-22.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Evaluating global ocean carbon models

T2 - The importance of realistic physics

AU - Doney, S. C.

AU - Lindsay, K.

AU - Caldeira, K.

AU - Campin, J. M.

AU - Drange, H.

AU - Dutay, J. C.

AU - Follows, M.

AU - Gao, Y.

AU - Gnanadesikan, A.

AU - Gruber, N.

AU - Ishida, A.

AU - Joos, F.

AU - Madec, G.

AU - Maier-Reimer, E.

AU - Marshall, J. C.

AU - Matear, R. J.

AU - Monfray, P.

AU - Mouchet, A.

AU - Najjar, R.

AU - Orr, J. C.

AU - Plattner, G. K.

AU - Sarmiento, J.

AU - Schlitzer, R.

AU - Slater, R.

AU - Totterdell, I. J.

AU - Weirig, M. F.

AU - Yamanaka, Y.

AU - Yool, A.

PY - 2004/9/1

Y1 - 2004/9/1

N2 - A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25-40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.

AB - A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25-40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.

UR - http://www.scopus.com/inward/record.url?scp=10244278020&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=10244278020&partnerID=8YFLogxK

U2 - 10.1029/2003GB002150

DO - 10.1029/2003GB002150

M3 - Article

AN - SCOPUS:10244278020

VL - 18

SP - GB3017 1-22

JO - Global Biogeochemical Cycles

JF - Global Biogeochemical Cycles

SN - 0886-6236

IS - 3

ER -

Doney SC, Lindsay K, Caldeira K, Campin JM, Drange H, Dutay JC et al. Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochemical Cycles. 2004 Sep 1;18(3):GB3017 1-22. https://doi.org/10.1029/2003GB002150