Evaluation of the computer controlled dynamic yield locus tester (DYLT)

S. P. Duffy, Virendra Puri

Research output: Contribution to journalConference article

Abstract

Shear cells based on the constant volume approach are a promising alternative to the constant load Jenike and rotational shear cell approaches. The purpose of this study was to further evaluate the computer controlled dynamic yield locus tester (DYLT) based on the constant volume approach. This was done by comparing the flow parameters of five test materials: 1) BCR limestone, 2) glass fibers, 3) ground silica, 4) microcrystalline cellulose, and 5) wheat flour, using the computer controlled Jenike tester (CCJT) and DYLT. Test results showed that the flow parameters, cohesion and angle of internal friction, measured using the CCJT and DYLT for BCR limestone, glass fibers and microcrystalline cellulose were statistically similar (p>0.05). Only one flow parameter value, cohesion at a consolidation stress of 10.7 kPa, for ground silica was significantly different (p<0.05) between the two experimental techniques. However, the magnitude of the F-statistic, 5.21, was similar to the F value at a level of significance of 0.05, 4.96. Three of six flow parameter values, i.e., cohesion and angle of internal friction, for wheat flour were significantly different (p<0.05) between the CCJT and DYLT. These differences are attributed to inconsistent post yield behavior. Minimal differences occurred between the experimental techniques, CCJT and DYLT, and the published data for BCR limestone.

Original languageEnglish (US)
JournalPaper - American Society of Agricultural Engineers
Volume3
StatePublished - Dec 1 1997
EventProceedings of the 1997 ASAE Annual International Meeting. Part 1 (of 3) - Minneapolis, MN, USA
Duration: Aug 10 1997Aug 14 1997

Fingerprint

Calcium Carbonate
loci
cohesion
limestone
Friction
Flour
Silicon Dioxide
Triticum
wheat flour
friction
silica
shear stress
cellulose
computer techniques
statistics
testing
cells
fiberglass
microcrystalline cellulose
glass fibers

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)

Cite this

@article{7ffa471f76d8482c913e2ccefec8c21e,
title = "Evaluation of the computer controlled dynamic yield locus tester (DYLT)",
abstract = "Shear cells based on the constant volume approach are a promising alternative to the constant load Jenike and rotational shear cell approaches. The purpose of this study was to further evaluate the computer controlled dynamic yield locus tester (DYLT) based on the constant volume approach. This was done by comparing the flow parameters of five test materials: 1) BCR limestone, 2) glass fibers, 3) ground silica, 4) microcrystalline cellulose, and 5) wheat flour, using the computer controlled Jenike tester (CCJT) and DYLT. Test results showed that the flow parameters, cohesion and angle of internal friction, measured using the CCJT and DYLT for BCR limestone, glass fibers and microcrystalline cellulose were statistically similar (p>0.05). Only one flow parameter value, cohesion at a consolidation stress of 10.7 kPa, for ground silica was significantly different (p<0.05) between the two experimental techniques. However, the magnitude of the F-statistic, 5.21, was similar to the F value at a level of significance of 0.05, 4.96. Three of six flow parameter values, i.e., cohesion and angle of internal friction, for wheat flour were significantly different (p<0.05) between the CCJT and DYLT. These differences are attributed to inconsistent post yield behavior. Minimal differences occurred between the experimental techniques, CCJT and DYLT, and the published data for BCR limestone.",
author = "Duffy, {S. P.} and Virendra Puri",
year = "1997",
month = "12",
day = "1",
language = "English (US)",
volume = "3",
journal = "Paper - American Society of Agricultural Engineers",
issn = "0145-0166",

}

Evaluation of the computer controlled dynamic yield locus tester (DYLT). / Duffy, S. P.; Puri, Virendra.

In: Paper - American Society of Agricultural Engineers, Vol. 3, 01.12.1997.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Evaluation of the computer controlled dynamic yield locus tester (DYLT)

AU - Duffy, S. P.

AU - Puri, Virendra

PY - 1997/12/1

Y1 - 1997/12/1

N2 - Shear cells based on the constant volume approach are a promising alternative to the constant load Jenike and rotational shear cell approaches. The purpose of this study was to further evaluate the computer controlled dynamic yield locus tester (DYLT) based on the constant volume approach. This was done by comparing the flow parameters of five test materials: 1) BCR limestone, 2) glass fibers, 3) ground silica, 4) microcrystalline cellulose, and 5) wheat flour, using the computer controlled Jenike tester (CCJT) and DYLT. Test results showed that the flow parameters, cohesion and angle of internal friction, measured using the CCJT and DYLT for BCR limestone, glass fibers and microcrystalline cellulose were statistically similar (p>0.05). Only one flow parameter value, cohesion at a consolidation stress of 10.7 kPa, for ground silica was significantly different (p<0.05) between the two experimental techniques. However, the magnitude of the F-statistic, 5.21, was similar to the F value at a level of significance of 0.05, 4.96. Three of six flow parameter values, i.e., cohesion and angle of internal friction, for wheat flour were significantly different (p<0.05) between the CCJT and DYLT. These differences are attributed to inconsistent post yield behavior. Minimal differences occurred between the experimental techniques, CCJT and DYLT, and the published data for BCR limestone.

AB - Shear cells based on the constant volume approach are a promising alternative to the constant load Jenike and rotational shear cell approaches. The purpose of this study was to further evaluate the computer controlled dynamic yield locus tester (DYLT) based on the constant volume approach. This was done by comparing the flow parameters of five test materials: 1) BCR limestone, 2) glass fibers, 3) ground silica, 4) microcrystalline cellulose, and 5) wheat flour, using the computer controlled Jenike tester (CCJT) and DYLT. Test results showed that the flow parameters, cohesion and angle of internal friction, measured using the CCJT and DYLT for BCR limestone, glass fibers and microcrystalline cellulose were statistically similar (p>0.05). Only one flow parameter value, cohesion at a consolidation stress of 10.7 kPa, for ground silica was significantly different (p<0.05) between the two experimental techniques. However, the magnitude of the F-statistic, 5.21, was similar to the F value at a level of significance of 0.05, 4.96. Three of six flow parameter values, i.e., cohesion and angle of internal friction, for wheat flour were significantly different (p<0.05) between the CCJT and DYLT. These differences are attributed to inconsistent post yield behavior. Minimal differences occurred between the experimental techniques, CCJT and DYLT, and the published data for BCR limestone.

UR - http://www.scopus.com/inward/record.url?scp=0031369230&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031369230&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:0031369230

VL - 3

JO - Paper - American Society of Agricultural Engineers

JF - Paper - American Society of Agricultural Engineers

SN - 0145-0166

ER -