### Abstract

In the ring of integral n by n matrices (n ⩾ 2) every matrix is the sum of three squares.

Original language | English (US) |
---|---|

Pages (from-to) | 1-4 |

Number of pages | 4 |

Journal | Linear and Multilinear Algebra |

Volume | 20 |

Issue number | 1 |

DOIs | |

State | Published - Nov 1 1986 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Algebra and Number Theory

### Cite this

}

*Linear and Multilinear Algebra*, vol. 20, no. 1, pp. 1-4. https://doi.org/10.1080/03081088608817738

**Every Integral Matrix is the Sum of Three Squares.** / Vaserstein, Leonid N.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Every Integral Matrix is the Sum of Three Squares

AU - Vaserstein, Leonid N.

PY - 1986/11/1

Y1 - 1986/11/1

N2 - In the ring of integral n by n matrices (n ⩾ 2) every matrix is the sum of three squares.

AB - In the ring of integral n by n matrices (n ⩾ 2) every matrix is the sum of three squares.

UR - http://www.scopus.com/inward/record.url?scp=33646838118&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646838118&partnerID=8YFLogxK

U2 - 10.1080/03081088608817738

DO - 10.1080/03081088608817738

M3 - Article

AN - SCOPUS:33646838118

VL - 20

SP - 1

EP - 4

JO - Linear and Multilinear Algebra

JF - Linear and Multilinear Algebra

SN - 0308-1087

IS - 1

ER -