Evidence of a Bottom-heavy Initial Mass Function in Massive Early-type Galaxies from Near-infrared Metal Lines

David J. Lagattuta, Jeremy R. Mould, Duncan A. Forbes, Andrew J. Monson, Nicola Pastorello, S. Eric Persson

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 μm in eight highly luminous () nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca ii triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K i, Na i, Mn i) showing a positive EW-σ correlation and others (Mg i, Ca ii, Fe i) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K i)/EW(Mg i)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies ( km s-1) favor a Chabrier IMF, while high-mass galaxies ( km s-1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime.

Original languageEnglish (US)
Article number166
JournalAstrophysical Journal
Volume846
Issue number2
DOIs
StatePublished - Sep 10 2017

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Evidence of a Bottom-heavy Initial Mass Function in Massive Early-type Galaxies from Near-infrared Metal Lines'. Together they form a unique fingerprint.

Cite this