Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods

Kenneth L. Knappenberger, Daryl B. Wong, Wei Xu, Adam M. Schwartzberg, Abraham Wolcott, Jin Z. Zhang, Stephen R. Leone

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

The influence of excitation wavelength and embedding media on fluorescence blinking statistics of 4 nm × 20 nin cadmium selenide (dSe) nanorods is investigated. Photon antibunching (PAB) experiments confirm nonclassical emission from single CdSe nanorods that exhibit a radiative lifetime of 26 ± 13 ns. The blinking data show behaviors that can be categorized into two classes: excitation near the energy of the band gap and at energies exceeding 240 meV above the band gap. Excitation at the band gap energy (λ ≥ 560 nm) results in more pronounced "on" time probabilities in the distribution of "on" and "off" events, while those resulting from excitation exceeding the band gap by 240 meV or more (λ ≥ 560 nm) are 200 times less likely to display continuous "on" fluorescence persisting beyond 4 s. The "off" time statistics are also sensitive to the excitation wavelength, showing a similar, but inversely correlated, effect. To understand better the excitation-wavelength dependence, fluorescence measurements are obtained for single nanorods deposited both on a bare microscope coverslip and embedded in 1-ethyl-3-methylimidizolium bis(trifluoromethylsuffonyl)imide room-temperature ionic liquid (RTIL). The embedding RTIL medium has a significant influence on the resultant fluorescence statistics only when the excitation energy exceeds the 240 meV threshold. The results are explained by a threshold to access nonemissive trap states, attributed to self-trapping of hot charge carriers at the higher photon excitation energies.

Original languageEnglish (US)
Pages (from-to)2143-2153
Number of pages11
JournalACS nano
Volume2
Issue number10
DOIs
StatePublished - Oct 1 2008

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods'. Together they form a unique fingerprint.

  • Cite this

    Knappenberger, K. L., Wong, D. B., Xu, W., Schwartzberg, A. M., Wolcott, A., Zhang, J. Z., & Leone, S. R. (2008). Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods. ACS nano, 2(10), 2143-2153. https://doi.org/10.1021/nn800421g