Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide

Zhen Bi, Liang Fu

Research output: Contribution to journalArticlepeer-review

Abstract

Artificial moiré superlattices in 2d van der Waals heterostructures are a new venue for realizing and controlling correlated electronic phenomena. Recently, twisted bilayer WSe2 emerged as a new robust moiré system hosting a correlated insulator at moiré half-filling over a range of twist angle. In this work, we present a theory of this insulating state as an excitonic density wave due to intervalley electron–hole pairing. We show that exciton condensation is strongly enhanced by a van Hove singularity near the Fermi level. Our theory explains the remarkable sensitivity of the insulating gap to the vertical electric field. In contrast, the gap is weakly reduced by a perpendicular magnetic field, with quadratic dependence at low field. The different responses to electric and magnetic field can be understood in terms of pair-breaking versus non-pair-breaking effects in a BCS analog of the system. We further predict superfluid spin transport in this electrical insulator, which can be detected by optical spin injection and spatial-temporal imaging.

Original languageEnglish (US)
Article number642
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide'. Together they form a unique fingerprint.

Cite this