Experimental characterization of tip leakage flow trajectories in a multistage compressor

Reid A. Berdanier, Nicole L. Key

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Fast-response pressure measurements collected in a three-stage axial compressor highlight the development of the rotor tip leakage flow. Data collected from an array of high-frequency-response pressure transducers measure timeresolved static pressure over the rotors at several loading conditions for three tip clearance heights. The influence of surrounding vane rows on the rotor tip leakage flow is investigated by adjusting the position of the vanes with respect to fixed sensor positions. One key result is that the wake from the upstream vane creates a modulation of the leakage flow. However, the upstream propagating potential field from the downstream vane row has no measureable impact on the leakage flow trajectory. In some cases, variations of the leakage flow trajectory angle due to these blade row interactions are greater than the differences due to a doubling of the rotor tip clearance height, an important finding not previously reported in the literature. Differences of the leakage flow trajectory trends with tip clearance are identified for a high loading condition compared to other operating points. Based on these observations, alternate methods are introduced for achieving collapsed leakage flow trajectories with changing tip clearance in two different flow ranges along the speed line.

Original languageEnglish (US)
Pages (from-to)1022-1032
Number of pages11
JournalJournal of Propulsion and Power
Volume32
Issue number4
DOIs
StatePublished - 2016

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Fuel Technology
  • Mechanical Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Experimental characterization of tip leakage flow trajectories in a multistage compressor'. Together they form a unique fingerprint.

Cite this