Experimental conditions favoring the formation of fluid banks during counter-current flow in porous media

Z. T. Karpyn, G. Li, A. S. Grader, P. M. Halleck

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The purpose of this study is to investigate factors that affect the formation of fluid banks during gravity-driven counter-current flow in porous media. To our knowledge, development of a fluid bank has been observed in only one previous counter-current flow experiment, although there are some hints of fluid banks in other experiments. We have undertaken experimental and simulation studies to confirm the presence of such banks and to delineate factors which enhance or inhibit their formation. Experiments were performed using glass bead packs and X-ray Computed Tomography to monitor saturation distribution as a function of time. The simulation approach considers saturation history at every point in the sample, defining conditions at each time point from hysteresis in capillary pressure and relative permeability. The model proved to reproduce experimental observations accurately. The experiments and associated model show that a minimal vertical sample height is needed for the development of a fluid bank. In addition, round sample boundaries and higher average nonwetting phase saturation tend to prevent the formation of a bank. The validated model can improve our ability to predict and optimize counter-current flow processes, both in the laboratory and in the field (e.g. exploration and hydrocarbon extraction).

Original languageEnglish (US)
Pages (from-to)109-124
Number of pages16
JournalTransport in Porous Media
Volume62
Issue number1
DOIs
StatePublished - Jan 2006

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Experimental conditions favoring the formation of fluid banks during counter-current flow in porous media'. Together they form a unique fingerprint.

Cite this