Experimental validation of multi-mode tailboom passive vibration control using fluidic flexible matrix composite tubes

Research output: Contribution to journalConference article

2 Citations (Scopus)

Abstract

Helicopter tailboom vibrations are easily excited and decay slowly due to the tailboom's low inherent structural damping. The resulting vibration causes poor ride quality for passengers, fatigues structural elements, and increases maintenance requirements for the helicopter. Fluidic Flexible Matrix Composite (F2MC) tubes are an emerging technology which can provide lightweight, compact vibration control when attached to a vibrating structure and coupled with a fluidic circuit. This paper presents experimental results to validate a method for combining a finite element structural model of a laboratory-scale tailboom with a model of the F2MC tubes and fluidic circuit dynamics. Reductions of over 70% in both bending and torsional vibration are demonstrated in a coupled 26.7 Hz lateral bending/torsion tailboom mode, indicating that F2MC vibration control is viable at higher frequencies and for more complex vibration modes than previous research had explored. A second group of experiments is performed to demonstrate the effectiveness of a novel fluidic circuit configuration which targets two tailboom vibration modes, in contrast to the previous F2MC treatment which can target only one mode. On the lab-scale tailboom testbed, vibration reductions of over 60% are demonstrated in two modes simultaneously when targeting both a 12.2 Hz vertical mode and a 26.7 Hz lateral bending/torsion mode. The circuit designed to reduce vibrations in two modes has a nearly identical weight to a comparable single-mode treatment but is much more effective in reducing vibrations at the second mode.

Original languageEnglish (US)
Pages (from-to)1117-1127
Number of pages11
JournalAnnual Forum Proceedings - AHS International
StatePublished - Jan 1 2017

Fingerprint

Fluidics
Vibration control
Networks (circuits)
Composite materials
Helicopters
Torsional stress
Testbeds
Vibrations (mechanical)
Damping
Fatigue of materials
Experiments

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{0048abebf33f40089bda1164f8bf0e5f,
title = "Experimental validation of multi-mode tailboom passive vibration control using fluidic flexible matrix composite tubes",
abstract = "Helicopter tailboom vibrations are easily excited and decay slowly due to the tailboom's low inherent structural damping. The resulting vibration causes poor ride quality for passengers, fatigues structural elements, and increases maintenance requirements for the helicopter. Fluidic Flexible Matrix Composite (F2MC) tubes are an emerging technology which can provide lightweight, compact vibration control when attached to a vibrating structure and coupled with a fluidic circuit. This paper presents experimental results to validate a method for combining a finite element structural model of a laboratory-scale tailboom with a model of the F2MC tubes and fluidic circuit dynamics. Reductions of over 70{\%} in both bending and torsional vibration are demonstrated in a coupled 26.7 Hz lateral bending/torsion tailboom mode, indicating that F2MC vibration control is viable at higher frequencies and for more complex vibration modes than previous research had explored. A second group of experiments is performed to demonstrate the effectiveness of a novel fluidic circuit configuration which targets two tailboom vibration modes, in contrast to the previous F2MC treatment which can target only one mode. On the lab-scale tailboom testbed, vibration reductions of over 60{\%} are demonstrated in two modes simultaneously when targeting both a 12.2 Hz vertical mode and a 26.7 Hz lateral bending/torsion mode. The circuit designed to reduce vibrations in two modes has a nearly identical weight to a comparable single-mode treatment but is much more effective in reducing vibrations at the second mode.",
author = "Matthew Krott and Edward Smith and Rahn, {Christopher D.}",
year = "2017",
month = "1",
day = "1",
language = "English (US)",
pages = "1117--1127",
journal = "Annual Forum Proceedings - AHS International",
issn = "1552-2938",
publisher = "American Helicopter Society",

}

TY - JOUR

T1 - Experimental validation of multi-mode tailboom passive vibration control using fluidic flexible matrix composite tubes

AU - Krott, Matthew

AU - Smith, Edward

AU - Rahn, Christopher D.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Helicopter tailboom vibrations are easily excited and decay slowly due to the tailboom's low inherent structural damping. The resulting vibration causes poor ride quality for passengers, fatigues structural elements, and increases maintenance requirements for the helicopter. Fluidic Flexible Matrix Composite (F2MC) tubes are an emerging technology which can provide lightweight, compact vibration control when attached to a vibrating structure and coupled with a fluidic circuit. This paper presents experimental results to validate a method for combining a finite element structural model of a laboratory-scale tailboom with a model of the F2MC tubes and fluidic circuit dynamics. Reductions of over 70% in both bending and torsional vibration are demonstrated in a coupled 26.7 Hz lateral bending/torsion tailboom mode, indicating that F2MC vibration control is viable at higher frequencies and for more complex vibration modes than previous research had explored. A second group of experiments is performed to demonstrate the effectiveness of a novel fluidic circuit configuration which targets two tailboom vibration modes, in contrast to the previous F2MC treatment which can target only one mode. On the lab-scale tailboom testbed, vibration reductions of over 60% are demonstrated in two modes simultaneously when targeting both a 12.2 Hz vertical mode and a 26.7 Hz lateral bending/torsion mode. The circuit designed to reduce vibrations in two modes has a nearly identical weight to a comparable single-mode treatment but is much more effective in reducing vibrations at the second mode.

AB - Helicopter tailboom vibrations are easily excited and decay slowly due to the tailboom's low inherent structural damping. The resulting vibration causes poor ride quality for passengers, fatigues structural elements, and increases maintenance requirements for the helicopter. Fluidic Flexible Matrix Composite (F2MC) tubes are an emerging technology which can provide lightweight, compact vibration control when attached to a vibrating structure and coupled with a fluidic circuit. This paper presents experimental results to validate a method for combining a finite element structural model of a laboratory-scale tailboom with a model of the F2MC tubes and fluidic circuit dynamics. Reductions of over 70% in both bending and torsional vibration are demonstrated in a coupled 26.7 Hz lateral bending/torsion tailboom mode, indicating that F2MC vibration control is viable at higher frequencies and for more complex vibration modes than previous research had explored. A second group of experiments is performed to demonstrate the effectiveness of a novel fluidic circuit configuration which targets two tailboom vibration modes, in contrast to the previous F2MC treatment which can target only one mode. On the lab-scale tailboom testbed, vibration reductions of over 60% are demonstrated in two modes simultaneously when targeting both a 12.2 Hz vertical mode and a 26.7 Hz lateral bending/torsion mode. The circuit designed to reduce vibrations in two modes has a nearly identical weight to a comparable single-mode treatment but is much more effective in reducing vibrations at the second mode.

UR - http://www.scopus.com/inward/record.url?scp=85029655266&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029655266&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85029655266

SP - 1117

EP - 1127

JO - Annual Forum Proceedings - AHS International

JF - Annual Forum Proceedings - AHS International

SN - 1552-2938

ER -