Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady-state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter-scale) is similar to models of weathering rind formation (centimeter-scale) where curvature-driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport-limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element-depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering-limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element-depth profiles along hillslopes denuding under erosive transport-limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings.

Original languageEnglish (US)
Pages (from-to)1793-1807
Number of pages15
JournalEarth Surface Processes and Landforms
Volume38
Issue number15
DOIs
StatePublished - Jan 1 2013

Fingerprint

production function
regolith
hillslope
erosion
weathering
curvature
regime
erosion rate
valley
clast
land surface
mineral
weather
chemical weathering
subversion
denudation
prediction
solute transport
infiltration
dissolution

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)

Cite this

@article{aed041e8f44049fa9dde9745bf394009,
title = "Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function",
abstract = "Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady-state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter-scale) is similar to models of weathering rind formation (centimeter-scale) where curvature-driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport-limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element-depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering-limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element-depth profiles along hillslopes denuding under erosive transport-limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings.",
author = "Lebedeva, {Marina Ivanovna} and Brantley, {Susan Louise}",
year = "2013",
month = "1",
day = "1",
doi = "10.1002/esp.3424",
language = "English (US)",
volume = "38",
pages = "1793--1807",
journal = "Earth Surface Processes and Landforms",
issn = "0197-9337",
publisher = "John Wiley and Sons Ltd",
number = "15",

}

TY - JOUR

T1 - Exploring geochemical controls on weathering and erosion of convex hillslopes

T2 - Beyond the empirical regolith production function

AU - Lebedeva, Marina Ivanovna

AU - Brantley, Susan Louise

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady-state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter-scale) is similar to models of weathering rind formation (centimeter-scale) where curvature-driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport-limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element-depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering-limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element-depth profiles along hillslopes denuding under erosive transport-limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings.

AB - Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady-state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter-scale) is similar to models of weathering rind formation (centimeter-scale) where curvature-driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport-limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element-depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering-limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element-depth profiles along hillslopes denuding under erosive transport-limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings.

UR - http://www.scopus.com/inward/record.url?scp=84882995012&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84882995012&partnerID=8YFLogxK

U2 - 10.1002/esp.3424

DO - 10.1002/esp.3424

M3 - Article

AN - SCOPUS:84882995012

VL - 38

SP - 1793

EP - 1807

JO - Earth Surface Processes and Landforms

JF - Earth Surface Processes and Landforms

SN - 0197-9337

IS - 15

ER -